NASA's Marshall Space Flight Center in Huntsville, Ala., collaborated with NASA's White Sands Test Facility in Las Cruces, N.M., and Pratt & Whitney Rocketdyne in Canoga Park, Calif., to successfully complete a series of thruster tests at the White Sands test facility.
The test will aid in maneuvering and landing the next generation of robotic lunar landers that could be used to explore the moon's surface and other airless celestial bodies.
The Robotic Lunar Lander Development Project at the Marshall Center performed a series of hot-fire tests on two high thrust-to-weight thrusters – a 100-pound-class for lunar descent and a 5-pound-class for attitude control.
The team used a lunar mission profile during the test of the miniaturized thrusters to assess the capability of these thruster technologies for possible use on future NASA spacecraft.
The test program fully accomplished its objectives, including evaluation of combustion stability, engine efficiency, and the ability of the thruster to perform the mission profile and a long-duration, steady-state burn at full power. The test results will allow the Robotic Lander Project to move forward with robotic lander designs using advanced propulsion technology.
The test articles are part of the Divert Attitude Control System, or DACS, developed by the U.S. Missile Defense Agency of the Department of Defense. The control system provides two kinds of propulsion -- one for control and the other for maneuvering.
The Attitude Control System thrusters provide roll, pitch and yaw control. These small thruster types were chosen to meet the golf-cart-size lander's requirement for light-weight, compact propulsion components to aid in reducing overall spacecraft mass and mission cost by leveraging an existing government resource.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment