Thursday, August 11, 2011

Has Graphene Been Detected in Space?

Artist's impression of the graphenes (C24) and fullerenes found in a planetary nebula. 

The detection of graphenes and fullerenes around old stars as common as our Sun suggests that these molecules and other allotropic forms of carbon may be widespread in space. 

Credit: IAC; original image of the Helix Nebula: NASA, NOAO, ESA, the Hubble Helix Nebula Team, M. Meixner, STScI and T.A. Rector, NRAO.

A team of astronomers, using the Spitzer Space Telescope, have reported the first extragalactic detection of the C70 fullerene molecule, and the possible detection of planar C24 ("a piece of graphene") in space.

Letizia Stanghellini and Richard Shaw, members of the team at the National Optical Astronomy Observatory in Tucson, Arizona, describe how collisional shocks powered by the winds from old stars in planetary nebulae could be responsible for the formation of fullerenes (C60 and C70) and graphene (planar C24).

The team is led by Domingo Anibal Garcia-Hernandez of the Instituto de Astrofisica de Canarias in Spain and includes international astronomers and biochemists.

Planetary nebulae originate from stars similar to our Sun that have reached the end of their lives and are shedding shells of gas into space. In this case, the planetary nebulae are located in the Magellanic Clouds, two satellite galaxies to our own Milky Way, that are best seen from the Southern Hemisphere. At the distance of the Magellanic Clouds, planetary nebulae appear as small fuzzy blobs.

However, unlike planetaries in our own Milky Way Galaxy whose distances are very uncertain, the distance to planetaries in the Magellanic Clouds can be determined to better than 5%. With such accurate distances, the research team determined the true luminosity of the stars and confirmed that the objects are indeed planetary nebulae and not some other object in the astrophysical zoo.

Fullerenes, or Buckyballs, are known from laboratory work on Earth and have many interesting and important properties. Fullerenes consist of carbon atoms arranged in a three dimensional sphere similar to the geodesic domes popularized by Buckminster Fuller.

The C70 fullerene can be compared with a rugby ball, while C60 is compared to a soccer ball. Both of these molecules have been detected in the sample. Graphene (planar C24) is a flat sheet of carbon atoms, one atom thick, that has extraordinary strength, conductivity, elasticity and thinness.

Cited as the thinnest substance known, graphene was first synthesized in the lab in 2004 by Geim and Novoselov for which they received the 2010 Nobel Prize in physics. "If confirmed with laboratory spectroscopy - something that is almost impossible with the present techniques - this would be the first detection of graphene in space," said team member Garcia-Hernandez.

The team has proposed that fullerenes and graphene are formed from the shock-induced (i.e., grain-grain collisions) destruction of hydrogenated amorphous carbon grains (HACs). Such collisions are expected in the stellar winds emanating from planetary nebulae, and this team sees evidence for strong stellar winds in the ultraviolet spectra of these stars.

"What is particularly surprising is that the existence of these molecules does not depend on the stellar temperature, but on the strength of the wind shocks," says Stanghellini.

The Small Magellanic Cloud is particularly poor in metals (any element besides hydrogen and helium, in astronomers' parlance), but this sort of environment favors the evolution of carbon-rich planetary nebulae, which turns out to be a favorable place for complex carbon molecules.

No comments:

Post a Comment