Monday, October 10, 2011

NASA GRAIL: Artist's Rendition

Using a precision formation-flying technique, the twin GRAIL spacecraft will map the moon's gravity field, as depicted in this artist's rendering. 

Radio signals traveling between the two spacecraft provide scientists the exact measurements required as well as flow of information not interrupted when the spacecraft are at the lunar farside, not seen from Earth. 

The result should be the most accurate gravity map of the moon ever made.

The mission also will answer longstanding questions about Earth's moon, including the size of a possible inner core, and it should provide scientists with a better understanding of how Earth and other rocky planets in the solar system formed. GRAIL is a part of NASA's Discovery Program.

Image credit: NASA/JPL-Caltech

NASA's Gravity Recovery And Interior Laboratory (GRAIL)-B spacecraft successfully executed its first flight path correction maneuver Wednesday, Oct. 5. The rocket burn helped refine the spacecraft's trajectory as it travels from Earth to the moon and provides separation between itself and its mirror twin, GRAIL-A. The first burn for GRAIL-A occurred on Sept. 30.

"Both spacecraft are alive and with these burns, prove that they're kicking too, as expected," said David Lehman, GRAIL project manager at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "There is a lot of time and space between now and lunar orbit insertion, but everything is looking good."

GRAIL-B's rocket burn took place on Oct. 5 at 11 a.m. PDT (2 p.m. EDT). The spacecraft's main engine burned for 234 seconds and imparted a velocity change of 56.1 mph (25.1 meters per second) while expending 8.2 pounds (3.7 kilograms) of propellant.

GRAIL-A's burn on Sept. 30 also took place at 11 a.m. PDT. It lasted 127 seconds and imparted a 31.3 mph (14 meters per second) velocity change on the spacecraft while expending 4 pounds (1.87 kilograms) of propellant.

These burns are designed to begin distancing GRAIL-A and GRAIL-B's arrival times at the moon by approximately one day and to insert them onto the desired lunar approach paths.

Read more on NASA Grail Mission

No comments:

Post a Comment