Monday, October 20, 2014

Exomoons Could Be Abundant Sources Of Habitability

Europa is one of the moons in our solar system that could host life. 

What about beyond the solar system? 

Credit: NASA/JPL/Ted Stryk

With about 4,000 planet candidates from the Kepler Space Telescope data to analyze so far, astronomers are busy trying to figure out questions about habitability.

What size planet could host life? How far from its star does it need to be? What would its atmosphere need to be made of?

Look at our own solar system, however, and there's a big gap in the information we need. Most of the planets have moons, so surely at least some of the Kepler finds would have them as well. Tracking down these tiny worlds, however, is a challenge.

A new paper in the journal Astrobiology, called "Formation, Habitability, and Detection of Extrasolar Moons," goes over this mostly unexplored field of extrasolar research.

The scientists do an extensive literature review of what is supposed about moons beyond the Solar System, and they add intriguing new results.

A wealth of moons exist in our own solar system that could host life. Icy Europa, which is circling Jupiter, was recently discovered to have plumes of water erupting from its surface.

Titan, in orbit around Saturn, is the only known moon with an atmosphere, and could have the precursor elements to life in its hydrocarbon seas that are warmed by Saturn's heat.

Other candidates for extraterrestrial hosts include Jupiter's moons Callisto and Ganymede, as well as Saturn's satellite Enceladus.

Lead author René Heller, an astrophysicist at the Origins Institute at McMaster University, in Ontario, Canada, said some exomoons could be even better candidates for life than many exoplanets.

"Moons have separate energy sources," he said. "While the habitability of terrestrial planets is mostly determined by stellar illumination, moons also receive reflected stellar light from the planet as well as thermal emission from the planet itself."

Moreover, a planet like Jupiter, which hosts most of the moons in the Solar System that could support life, provides even more potential energy sources, he added.

The planet is still shrinking and thereby converts gravitational energy into heat, so that it actually emits more light than it receives from the Sun, providing yet more illumination.

Besides that, moons orbiting close to a gas giant are flexed by the planet's gravity, providing potential tidal heating as an internal, geological heat source.

Finding the first exomoon

The first challenge in studying exomoons outside our Solar System is to actually find one. Earlier this year, NASA-funded researchers reported the possible discovery of such a moon, but this claim was ambiguous and can never be confirmed.

That's because it appeared as a one-time event, when one star passed in front of another, acting as a sort of gravitational lens that amplified the background star.

Two objects popped out in the gravitational lens in the foreground, either a planet and a star, or a planet and an extremely heavy exomoon.

For his part, Heller is convinced that exomoons are lurking in the Kepler data, but they have not been discovered yet.

Only one project right now is dedicated to searching for exomoons, and is led by David Kipping at the Canadian Space Agency.

His group has published several papers investigating 20 Kepler planets and candidates in total. The big restriction to their efforts is computational power, as their simulations require supercomputers.

Triton’s odd, melted appearance hint that the moon was captured and altered by Neptune. 

Credit: NASA

Another limiting factor is the number of observatories that can search for exomoons.

To detect them, at least a handful of transits of the planet-moon system across their common host star would be required to absolutely make sure that the companion is a moon, Heller said.

Also, the planet with the moon would have to be fairly far from its star, and decidedly not those close-in hot Jupiters that take only a few days to make an orbit. In that zone, the gravitational drag of the star would fatally perturb any moon's orbit.

Heller estimates that a telescope would need to stare constantly at the same patch of sky for several hundred days, minimum, to pick up an exomoon.

Kepler fulfilled that obligation in spades with its four years of data gazing at the same spot in the sky, but astronomers will have to wait again for that opportunity.

Because two of Kepler's gyroscopes (pointing devices) have failed, Kepler's new mission will use the pressure of the Sun to keep it steady, but it can only now point to the same region of the sky for about 80 days at at time because the telescope will periodically need to be moved so as not to risk placing its optics too close to the Sun.

NASA's forthcoming Transiting Exoplanet Survey Satellite is only expected to look at a given field for 70 days.

In the future, the European Space Agency's PLAnetary Transits and Oscillations of stars (PLATO) will launch in 2024 for what is a planned six-year mission looking at several spots in the sky.

"PLATO is the next step, with a comparable accuracy to Kepler but a much larger field of view and hopefully a longer field of view coverage," Heller said.

Read the full article here

No comments:

Post a Comment