Showing posts with label GRBs. Show all posts
Showing posts with label GRBs. Show all posts

Saturday, June 14, 2014

Atacama Array (ALMA) detects star forming molecular gas

An artist’s conception of the environment around GRB 020819B based on ALMA observations. 

Image Credit: NAOJ

Using the Atacama Large Millimeter/submillimeter Array (ALMA), a team of researchers reports the first-ever detection of molecular gas, the fuel for star formation, in two galaxies that were previously rocked by gamma ray bursts (GRBs), the brightest explosions in the Universe.

These new observations revealed that the molecular gas was concentrated toward the centers of the galaxies, while the GRBs occurred in unusual environments that were surprisingly bereft of gas yet rich in dust.

The researchers speculate that the dearth of molecular gas around the GRBs was due to strong ultraviolet (UV) radiation from young, massive stars, which can break apart the molecules of gas while leaving the dust relatively undisturbed.

The GRBs, dubbed GRB 020819B and GRB 051022, are located approximately 4.3 billion and 6.9 billion light-years away from Earth, respectively.

Astronomer Bunyo Hatsukade, assistant professor at the Chile Observatory of the National Astronomical Observatory of Japan (NAOJ), led the research group that studied the GRB host galaxies. The results are published in the journal Nature.

ALMA's unprecedented sensitivity made it possible to make the first detection ever of carbon monoxide (CO) gas in a GRB host galaxy.

ALMA's unparalleled high resolution also revealed GRB 020819B occurred in a galaxy where the molecular gas was concentrated at the nuclear region while dust was concentrated at the site of the GRB.

The ratio of dust to molecular gas at the GRB site is ten or more times higher than in normal environments. It is the first time that the spatial distribution of molecular gas and dust in the GRB host galaxies is revealed.

Currently, GRBs are classified as either long- or short-duration.

  • A long-duration GRB, which lasts two seconds or longer, is believed to be generated by the supernova explosion of a star 40 or more times the mass of our Sun. 
  • Short GRBs last less than two seconds and are associated with the collision and merger of neutron stars.


Wednesday, August 7, 2013

GRB Explosion illuminates invisible galaxy in the dark ages

Before light from the gamma-ray burst arrives at the Earth for astronomers to study, it passes through interstellar gas in its host galaxy (close-up view, left), and intergalactic gas between the distant galaxy and us (wide view, right).

This gas filters the light by absorbing some colors and leaves a signature on the light that can be seen in its spectrum.

This "signature" allows scientists to characterize the gamma-ray burst, its environment, and the material between us and the distant galaxy.

Credit: Gemini Observatory/AURA, artwork by Lynette Cook

More than 12 billion years ago a star exploded, ripping itself apart and blasting its remains outward in twin jets at nearly the speed of light. At its death it glowed so brightly that it outshone its entire galaxy by a million times.

This brilliant flash traveled across space for 12.7 billion years to a planet that hadn't even existed at the time of the explosion - our Earth.

By analyzing this light, astronomers learned about a galaxy that was otherwise too small, faint and far away for even the Hubble Space Telescope to see.

Ryan Chornock
"This star lived at a very interesting time, the so-called dark ages just a billion years after the Big Bang," says lead author Ryan Chornock of the Harvard-Smithsonian Center for Astrophysics (CfA).

"In a sense, we're forensic scientists investigating the death of a star and the life of a galaxy in the earliest phases of cosmic time," he adds.

The star announced its death with a flash of gamma rays, an event known as a gamma-ray burst (GRB).

GRB 130606A was classified as a long GRB since the burst lasted for more than four minutes.

It was detected by NASA's Swift spacecraft on June 6th. Chornock and his team quickly organized follow-up observations by the MMT Telescope in Arizona and the Gemini North telescope in Hawaii.

"We were able to get right on target in a matter of hours," Chornock says. "That speed was crucial in detecting and studying the afterglow."

A GRB afterglow occurs when jets from the burst slam into surrounding gas, sweeping that material up like a snowplow, heating it, and causing it to glow.

As the afterglow's light travels through the dead star's host galaxy, it passes through clouds of interstellar gas.

Chemical elements within those clouds absorb light at certain wavelengths, leaving "fingerprints." By splitting the light into a rainbow spectrum, astronomers can study those fingerprints and learn what gases the distant galaxy contained.

All chemical elements heavier than hydrogen, helium, and lithium had to be created by stars.

As a result those heavy elements, which astronomers collectively call "metals," took time to accumulate. Life could not have existed in the early universe because the elements of life, including carbon and oxygen, did not exist.

Chornock and his colleagues found that the GRB galaxy contained only about one-tenth of the metals in our solar system. Theory suggests that although rocky planets might have been able to form, life probably could not thrive yet.

"At the time this star died, the universe was still getting ready for life. It didn't have life yet, but was building the required elements," says Chornock.

At a redshift of 5.9, or a distance of 12.7 billion light-years, GRB 130606A is one of the most distant gamma-ray bursts ever found.

"In the future we will be able to find and exploit even more distant GRBs with the planned Giant Magellan Telescope," says Edo Berger of the CfA, a co-author on the publication.