A Rice University-led team of physicists is reporting the first success in a three-year effort to build a precision simulator for superconductors using a grid of intersecting laser beams and ultracold atomic gas.
The research appears this week in the journal Nature. Using lithium atoms cooled to within a few billionths of a degree of absolute zero and loaded into optical tubes, the researchers created a precise analog of a one-dimensional superconducting wire.
Because the atoms in the experiment are so cold, they behave according to the same quantum mechanical rules that dictate how electrons behave. That means the lithium atoms can serve as stand-ins for electrons, and by trapping and holding the lithium atoms in beams of light, researchers can observe how electrons would behave in particular types of superconductors and other materials.
"We can tune the spacing and interactions among these ultracold atoms with great precision, so much so that using the atoms to emulate exotic materials like superconductors can teach us some things we couldn't learn by studying the superconductors themselves," said study co-author Randy Hulet, a Rice physicist who's leading a team of physicists at Rice and six other universities under the Defense Advanced Research Projects Agency's (DARPA) Optical Lattice Emulator (OLE) program.
In the Nature study, Hulet, Cornell University physicist Erich Mueller, Rice graduate students and postdoctoral researchers Yean-an Liao, Sophie Rittner, Tobias Paprotta, Wenhui Li and Gutherie Partridge and Cornell graduate student Stefan Baur created an emulator that allowed them to simultaneously examine superconductivity and magnetism - phenomena that do not generally coexist.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment