Wednesday, February 11, 2015

Dwarf Planets: Science and Facts

Pluto was demoted to dwarf planet status in 2006, joining Eris, Haumea, Makemake and Ceres.

Credit: Karl Tate, SPACE.com

In 2006, an assembly of the International Astronomical Union voted to define a planet as a celestial body that a) is in orbit around the sun, 2) has enough mass for its gravity to pull it into a rounded shape (hydrostatic equilibrium), and 3) has cleared the neighborhood of its orbit of other, smaller objects.

This last criterion is the point at which planets and dwarf planets differ. A planet's gravity either attracts or pushes away the smaller bodies that would otherwise intersect its orbit; the gravity of a dwarf planet is not sufficient to make this happen.

Astronomers estimate that there could be as many as 200 dwarf planets in the solar system and Kuiper Belt. But the differences between planets and dwarf planets may not be obvious at first. 

ESA VV04 Vega Rocket Launches IXV Spacecraft



Replay of the liftoff of Vega VV04 with ESA's Intermediate eXperimental Vehicle, IXV, launched from Kourou, French Guiana on 11 February 2015.

IXV was launched 340 km into space atop a Vega rocket, VV04, from Kourou in French Guiana on 11 February 2015.

After separation from Vega, IXV coasted to 412 km before beginning a punishing glide back through the atmosphere.

During its autonomous flight, IXV tested the latest technologies and critical systems to extend Europe’s capability for space exploration.

Geologists unlock mysteries of our Earth's inner core

A research team from the University of Illinois and colleagues in China found earth's inner core has an inner core of its own, with crystals aligned in a different direction. 

Image courtesy Lachina Publishing Services.

Seismic waves are helping scientists to plumb the world's deepest mystery: the planet's inner core.

Thanks to a novel application of earthquake-reading technology, a research team at the University of Illinois and colleagues at Nanjing University in China have found that the Earth's inner core has an inner core of its own, which has surprising properties that could reveal information about our planet.

Xiaodong Song
Led by Xiaodong Song, a professor of geology at the U. of I., and visiting postdoctoral researcher Tao Wang, the team published its work in the journal Nature Geoscience on Feb. 9.

"Even though the inner core is small - smaller than the moon - it has some really interesting features," said Song.

"It may tell us about how our planet formed, its history, and other dynamic processes of the Earth. It shapes our understanding of what's going on deep inside the Earth."

Researchers use seismic waves from earthquakes to scan below the planet's surface, much like doctors use ultrasound to see inside patients.

The team used a technology that gathers data not from the initial shock of an earthquake, but from the waves that resonate in the earthquake's aftermath.

The earthquake is like a hammer striking a bell; much like a listener hears the clear tone that resonates after the bell strike, seismic sensors collect a coherent signal in the earthquake's coda.

(NB: CODA, on a recorded earthquake seismogram refers to the total length of the seismic wavetrain)

"It turns out the coherent signal enhanced by the technology is clearer than the ring itself," said Song.

"The basic idea of the method has been around for a while, and people have used it for other kinds of studies near the surface, but we are looking all the way through the center of the Earth."

Looking through the core revealed a surprise at the center of the planet, though not of the type envisioned by novelist Jules Verne.

The inner core, once thought to be a solid ball of iron, has some complex structural properties. 

The team found a distinct inner-inner core, about half the diameter of the whole inner core. 

The iron crystals in the outer layer of the inner core are aligned directionally, north-south. However, in the inner-inner core, the iron crystals point roughly east-west.

Not only are the iron crystals in the inner-inner core aligned differently, they behave differently from their counterparts in the outer-inner core.

This means that the inner-inner core could be made of a different type of crystal, or a different phase.

"The fact that we have two regions that are distinctly different may tell us something about how the inner core has been evolving," Song said.

"For example, over the history of the Earth, the inner core might have had a very dramatic change in its deformation regime. It might hold the key to how the planet has evolved. We are right in the center, literally, the center of the Earth."

Monday, February 9, 2015

Neil Armstrong's wife finds priceless bag of missing space equipment

The ‘McDivitt purse’ and its contents had been lost for four decades.

Credit: Getty

The bag full of power cables and utility clamps may not have looked very interesting when Carol Armstrong found them stuffed in a closet in her Ohio home.

Yet the items, which had lain hidden for more than four decades, were actually priceless mementos from the most famous space mission of all, during which her husband became the first person to walk on the Moon.

The so-called “McDivitt purse” contained objects carried in the Eagle lunar module during the historic Apollo 11 mission, and included the camera that filmed Neil Armstrong’s descent on to the Moon’s surface on 20 July 1969.

Neil Armstrong’s McDivitt purse, stowed in the lunar module during Apollo 11. 

The white cloth bag was returned to Earth, despite being scheduled to remain on the moon, and was stashed in Armstrong’s closet until his death in 2012.

The objects, which were supposed to be left on the Moon so as to not add extra weight to their capsule on its launch off the lunar surface, will go on display at the Smithsonian National Air and Space Museum alongside other artefacts from the mission. Experts said they were “of priceless historical value”.

Mounted in the right-hand window of the lunar module Eagle, this Data Acquisition Camera filmed the first landing on the moon. 

Armstrong and Buzz Aldrin later repositioned it to film their work on the lunar surface.

Allan Needell, curator in the space history department at the Smithsonian National Air and Space Museum, said: “Seeing such things with one’s own eyes helps us to appreciate that these accomplishments are not just books or movies but involve real people and real things, and that they involved an extraordinary amount of detailed engineering and planning”.

Ms Armstrong found the bag after her husband’s death in 2012 and emailed the curators saying it contained “assorted small items that looked like they may have come from a spacecraft”.

Mr Needell said: “For a curator of a collection of space artefacts, it is hard to imagine anything more exciting.”

A smiling Neil Armstrong in the Apollo 11's Lunar Module cabin after the EVA.

Credit: NASA

Among the 18 objects were cables, netting, mirrors and the waist tether Armstrong used.

There was also the 16mm camera which filmed the landing on the moon and the planting of the US flag, alongside a bracket for the camera, a 10mm lens and a lens shade.

They were put in the “purse”, named after Apollo 9 commander Jim McDivitt, who first suggested taking a spare bag to temporarily carry items, as there was no time to return them to storage.

A picture still survives of the bag in Buzz Aldrin’s hands in 1969.

Mr Needell said: “As far as we know, Neil has never discussed the existence of these items and no one else has seen them in the 45 years since he returned from the moon.”

Armstrong had not mentioned the items to his biographer James Hansen.

Two artifacts from the bag, the 16mm Data Acquisition Camera that was mounted in the window of the lunar module Eagle to capture the historic landing and a waist tether that Armstrong used to support his feet while briefly resting on the moon, are currently on display at the museum in a recently opened exhibition.

For more detailed information about the purse and its contents, head over to NASA.

ESA Mars Express Image: Cappuccino swirls at Mars’ south pole

Swirls of chocolate, caramel and cream, this image is definitely one to trigger sweet-toothed cravings.

Smooth cream-coloured plateaus surrounded by cocoa-dusted ridges interspersed with caramel-hued streaks create a scene reminiscent of a cosmic cappuccino.

This picture is, perhaps surprisingly, from ESA’s Mars Express, which has been exploring and imaging the martian surface and atmosphere since 2003.

We may be used to seeing numerous images of red and brown-hued soil and ruddy landscapes peppered with craters, but the Red Planet isn’t always so red.

The bright white region of this image shows the icy cap that covers Mars’ south pole, composed of frozen water and carbon dioxide.

While it looks smooth in this image, at close quarters the cap is a layered mix of peaks, troughs and flat plains, and has been likened in appearance to swiss cheese.

The southern cap reaches some 3 km thick in places, and is around 350 km in diameter. This icy region is permanent; in the martian winter another, thinner ice cap forms over the top of it, stretching further out across the planet and disappearing again when the weather warms up.

The cap is around 150 km north of Mars’ geographical south pole and Mars Express has shed light on why this ice cap is displaced.

Perspective view of Hellespontus Montes

Credit: ESA

Deep impact craters,notably the Hellas Basin, the largest impact structure on the entire planet at 7 km deep and 2300 km across, funnel the strong winds that blow across Mars towards its southern pole, creating a mix of different low- and high-pressure systems.

The carbon dioxide in the polar cap sublimates at different rates in these regions with contrasting pressure, resulting in the cap’s lopsided structure.

Mars Express imaged this area of Mars on 17 December 2012, in infrared, green and blue light, using its High Resolution Stereo Camera.

This image was processed by Bill Dunford, using data available from the ESA Planetary Science Archive.

NASA Earth Observatory captures Blue Eye of Cyclone Bansi

Tropical Cyclone Bansi was seen from the International Space Station.

Image Credit: NASA's Earth Observatory/NASA JSC/ISS

The Electric Eye of Cyclone Bansi
Though this image may look like they come from a science fiction movie, it is in fact a photograph of tropical cyclone Bansi as seen at night by astronauts on the International Space Station (ISS).

The image was taken when the ISS was east of Madagascar.

Bansi formed in the southwestern Indian Ocean on January 11, 2015. By the time the photo was taken on the following day, Bansi had achieved tropical cyclone strength, with sustained maximum winds over 185 kilometers (115 miles) per hour.

The cyclone would reach category 4 strength before becoming a weak extra-tropical system on January 19.

The dim swirl of the cloud bands covers the ocean surface in this night image. The eye of the cyclone is brilliantly lit by lightning in or near the eye wall.

Image of Cyclone Bansi taken by ESA Astronaut Sam Cristoforetti (@AstroSamantha) on the ISS.

Image shows lightning illuminating the eye-wall of Cyclone Bansi in the Indian Ocean.

Credit: ESA

The low-light settings of the camera used to take the image accentuate the contrast.

The camera also accentuates the yellow-green airglow above the Earth’s limb, an atmospheric phenomenon frequently seen by astronauts.

Stars appear above the airglow layer, and the solar panels of a docked Russian spacecraft jut into the image (upper left).

Astronaut photographs ISS042-E-135015 and ISS042-E-135030 were acquired on January 12, 2015, with a Nikon D4 digital camera using a 28 millimeter lens, and are provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center.

The image was taken by the Expedition 42 crew.They have been cropped and enhanced to improve contrast, and lens artifacts have been removed.

The International Space Station Program supports the laboratory as part of the ISS National Lab to help astronauts take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet.

Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth. Caption by William L. Stefanov, NASA-JSC.

Thursday, February 5, 2015

NASA DAWN: New Images of CERES - Animation

This image is one several images NASA's Dawn spacecraft took on approach to Ceres on Feb. 4, 2015 at a distance of about 90,000 miles (145,000 kilometers) from the dwarf planet. 

Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

NASA's Dawn spacecraft, on approach to dwarf planet Ceres, has acquired its latest and closest-yet snapshot of this mysterious world.

The above image of Ceres, taken on Feb. 4, 2015, from a distance of about 90,000 miles (145,000 kilometers).

At a resolution of 8.5 miles (14 kilometers) per pixel, the pictures represent the sharpest images to date of Ceres.

After the spacecraft arrives and enters into orbit around the dwarf planet, it will study the intriguing world in great detail.

Ceres, with a diameter of 590 miles (950 kilometers), is the largest object in the main asteroid belt, located between Mars and Jupiter.


ESA Planck Telescope: Sky Survey changes date on early stars

Planck has mapped the delicate polarisation of the CMB across the entire sky

Scientists working on ESA's Planck satellite say the first stars in the Universe lit up later than was previously thought.

The team has made the most precise map of the "oldest light" in the cosmos.

Earlier observations of this radiation had suggested that the first generation of stars burst into life about 420 million years after the Big Bang.

The new Planck data now indicates they fired up around 560 million years after the Universe got going.

"This difference of 140 million years might not seem that significant in the context of the 13.8-billion-year history of the cosmos, but proportionately it's actually a very big change in our understanding of how certain key events progressed at the earliest epochs," said Prof George Efstathiou, one of the leaders of the Planck Science Collaboration.

Subtle signal
The assessment is based on studies of the "afterglow" of the Big Bang, the ancient light called the Cosmic Microwave Background (CMB), which still washes over the Earth today.

The European Space Agency's (ESA) Planck satellite mapped this "fossil" between 2009 and 2013.

It contains a wealth of information about early conditions in the Universe, and can even be used to work out its age, shape and do an inventory of its contents.

Scientists can also probe it for very subtle "distortions" that tell them about any interactions the CMB has had on its way to us.

Forging elements
One of these would have been imprinted when the infant cosmos underwent a major environmental change known as re-ionisation.

It is when the cooling neutral hydrogen gas that dominated the Universe in the aftermath of the Big Bang was then re-energised by the ignition of the first stars.

These hot giants would have burnt brilliant but brief lives, producing the very first heavy elements. But they would also have "fried" the neutral gas around them - ripping electrons off the hydrogen protons.

And it is the passage of the CMB through this maze of electrons and protons that would have resulted in it picking up a subtle polarisation.

Impression: The first stars would have been unwieldy behemoths that burnt brief but brilliant lives

The Planck team has now analysed this polarisation in fine detail and determined it to have been generated at 560 million years after the Big Bang.

The American satellite WMAP, which operated in the 2000s, made the previous best estimate for re-ionisation at 420 million years.

The problem with that number was that it sat at odds with Hubble Space Telescope observations of the early Universe.

Hubble could not find stars and galaxies in sufficient numbers to deliver the scale of environmental change at the time when WMAP suggested it was occurring.

Planck's new timing "effectively solves the conflict," commented Prof Richard McMahon from Cambridge University, UK.

"We had two groups of astronomers who were basically working on different sides of the problem. The Planck people came at it from the Big Bang side, while those of us who work on galaxies came at it from the 'now side'.

"It's like a bridge being built over a river. The two sides do now join where previously we had a gap," he told reporters.

That gap had prompted scientists to invoke complicated scenarios for how re-ionisation could have occurred, including the ideas that there were an even earlier population of giant stars or energetic black holes. Such solutions are no longer needed.

The finding is also good news for the next generation of observatories like the James Webb Space Telescope, which will have the power to see right through the epoch of re-ionisation.

Sunday, February 1, 2015

Russian Proton-M launch carrying the Inmarsat-5 F-2 satellite

International Launch Services (ILS) opened their 2015 campaign with the launch of the Russian Proton-M launch vehicle, this time carrying the Inmarsat-5 F-2 communications satellite, part of the Inmarsat Global Xpress (GX) system, on a multi-hour flight to its transfer orbit. Launch from the Baikonur Cosmodrome in Kazakhstan was on schedule at 12:31 GMT.

Credit: NASA

The Proton booster that launched the Inmarsat-5 F-2 satellite is 4.1 m (13.5 ft) in diameter along its second and third stages, with a first stage diameter of 7.4 m (24.3 ft). Overall height of the three stages of the Proton booster is 42.3 m (138.8 ft).

The Boeing Space and Intelligence Systems built Inmarsat-5 F2 communications satellite, based on the BSS-702HP Platform.

Credit: Boeing

The Proton vehicle has a heritage of over 400 launches since 1965 and is built by Khrunichev Research and State Production Center, one of the pillars of the global space industry and the majority owner of ILS.

Z7The first stage consists of a central tank containing the oxidizer surrounded by six outboard fuel tanks.

Each fuel tank also carries one of the six RD-276 engines that provide first stage power. Total first stage vacuum-rated level thrust is 11.0 MN (2,500,000 lbf).

Of a conventional cylindrical design, the second stage is powered by three RD-0210 engines plus one RD-0211 engine and develops a vacuum thrust of 2.4 MN (540,000 lbf).

Powered by one RD-0213 engine, the third stage develops thrust of 583 kN (131,000 lbf), and a four-nozzle vernier engine that produces thrust of 31 kN (7,000 lbf).

2015-02-01 11_15_09-www.ilslaunch.com_sites_default_files_I5F2MO.pdf Guidance, navigation, and control of the Proton M during operation of the first three stages is carried out by a triple redundant closed-loop digital avionics system mounted in the Proton’s third stage.

The mission is utilising a 5-burn Breeze M Supersynchronous Transfer Orbit mission design, with the first three stages of the Proton using a standard ascent profile to place the orbital unit into a sub-orbital trajectory.

From this point in the mission, the Breeze M will per-form planned mission maneuvers to advance the orbital unit first to a circular parking orbit, then to an intermediate orbit, followed by a transfer orbit, and finally to a supersynchronous transfer orbit.

Separation of the Inmarsat-5 F2 satellite is scheduled to occur approximately 15 hours, 31 minutes after liftoff.

Saturday, January 31, 2015

ESA Integral manoeuvres to improve future observations

Credit: ESA

ESA’s Integral observatory is able to detect gamma-ray bursts, the most energetic phenomena in the Universe.

Since 2002, ESA’s Integral spacecraft has been observing some of the most violent events in the Universe, including gamma-ray bursts and black holes.

While it still has years of life ahead, its fuel will certainly run out one day.

Integral, one of ESA’s longest-serving and most successful space observatories, has begun a series of four thruster burns carefully designed to balance its scientific life with a safe reentry in 2029.

That seems far off, but detailed planning and teamwork now will ensure that the satellite’s eventual entry into the atmosphere will meet the Agency’s guidelines for minimising space debris.

Making these disposal manoeuvres so early will also minimises fuel usage, allowing ESA to exploit the valuable satellite’s lifetime to the fullest.

This is the first time that a spacecraft’s orbit is being adjusted, after 12 years in space, to achieve a safe reentry 15 years in the future, while maximising valuable science return for the subsequent seven to eight years.

“Our four burns will use about half of the estimated 96 kg of fuel available,” says Richard Southworth, spacecraft operations manager at ESA’s Space Operations Centre, ESOC, in Darmstadt, Germany.

“This will influence how Integral’s orbit evolves, so that even after we run out of propellant we will still have a safe reentry in February 2029 as a result of natural orbit decay.

“No further manoeuvres are required between now and then and Integral can continue to operate.”

Debris Mitigation
The latest ESA debris guidelines require that a satellite must be disposed of in such a way that it poses no risk to other satellites in protected orbital regions for more than 25 years.

Although Integral’s early launch date, in 2002, means it is not required to stick to the guidelines, they were followed for planning the disposal.

“We have done a great deal of modelling for Integral’s reentry in 2029,” says Klaus Merz of ESA’s Space Debris Office.

“We’re confident that this month’s manoeuvres will put it on track for a future safe reentry at latitudes in the far south, reducing risk far below guideline levels.”

Without these firings, the fuel supply would run out in perhaps 12–16 more years, after other essentials such as power end Integral's working life, but the satellite would not reenter for up to 200 years, which would present a hazard to other missions.

NASA Delta II Launch of SMAP



The Delta II rocket lifts off from Space Launch Complex 2 at Vandenberg Air Force Base carrying the Soil Moisture Active Passive (SMAP), satellite on a mission to measure and map the Earth's soil moisture distribution and freeze/thaw state with unprecedented accuracy. Liftoff was at 6:22 a.m. PST (9:22 a.m. EST).

The unfolded solar arrays to power SMAP and the golden feedhorn for its radar and radiometer are visible in this image taken during assembly and testing.

Credit: NASA, JPL.

In orbit graphic of SMAP satellite prior to third stage burn for orbit insertion and booster decoupling.

Credit: NASA,

Thursday, January 29, 2015

The Space Billboard: Innovation or Pollution of the Earth's skies

SpaceBillboard, a supporter of innovative space research, is set to launch the world's first billboard in space in a milestone that marks the increasing importance of CubeSats in Space Exploration.

Researchers at KU Leuven University in Belgium came up with the novel idea of launching a real billboard into space to help fund their research on a new line up of NexGen satellites called CubeSats.

A CubeSat is small, about the size of a milk carton - and lightweight, which makes them cheaper to build and launch.

A CubeSat is the perfect answer for universities and start-ups to get involved in space research, one of the bedrock platforms for research on advanced technology solutions.

European Space Agency ESA and NASA in the US have active CubeSat programs that help drive the development and adoption of emerging technologies in support of new business solutions.

Tjorven Delabie, co-founder of SpaceBillboard said: "We are talking about an out-of-this-world project, that allows companies to bring their brand into space."

"The idea is catching on, and SpaceBillboard has already secured a number of contracts for companies to have their message on their own billboard in space."

The launch of the billboard is scheduled for the beginning of 2016, to be launched from Alcantara in Brazil.

Highest and fastest
The messages on the SpaceBillboard will be the highest and the fastest ever seen in the industry, flying at 27,400 kph at an altitude of 500 km.

The Billboard will orbit the Earth 15 times a day, becoming the first advertisements that literally bring their message around the world.

Although the billboard will not be visible from Earth, all messages will be continuously visible on the SpaceBillboard website as well as used in the customers' branding campaigns.

Marketing and Science
SpaceBillboard is a new kind of crowdfunding project where private and corporate donors help push space research forward. For companies, buying one or more of the 400 available squares on the billboard is a perfect opportunity to showcase their innovative spirit. At euro 2500 per square for the launch premiere, SpaceBillboard is a fantastic way to bring together experts from academia and industry to support the future of technology.

Personal Messages
Inspiring people about space research is an important part of SpaceBillboard's mission. Therefore, you can also put a personal message on the billboard yourself.

Sending a personal message into space costs euro 1/character. So far, many have already signed up to share their message, most of them are messages of love.

Into Space
Once the SpaceBillboard has been sold out, it will be put on the CubeSat. This satellite will also perform a valuable scientific mission.

The CubeSat will be deployed into a high inclination, low Earth orbit, and is expected to operate in orbit for up to ten years.

After that, the satellite will burn up in the atmosphere, ensuring that no space debris is left behind.

Wednesday, January 28, 2015

MARS Habitation Fire ends GreenHab mission

Mars Desert Research Station (MDRS) GreenHab following a fire on Dec. 29, 201

Credit: Nick Orenstein

Four crewmembers simulating a mission on Mars dealt with a real-life emergency late last month, a greenhouse fire so strong that flames reached at least 10 feet (3 meters) high.

On Dec. 29, the first day of their mission, the crew noticed an unusual power surge in their habitat at the Mars Desert Research Station (MDRS), in the Utah desert near the small town of Hanksville.

A few minutes later, somebody spotted smoke coming from the greenhouse.

Crew commander Nick Orenstein, an experienced camper who has built bonfires in the past, ran outside to take a look.

He said he figured the group could take on the fire, because the smoke was blowing away from the habitat, and only one shelf inside the greenhouse was aflame.

At that time, the fire was about the size of three overstuffed chairs.

"This is a moment where instinct took over, the instinct of fight or flight, and we had fight," Orenstein told reporters. "There really wasn't a question at the moment."

It took the crew about half an hour to bring the fire under control.

Orenstein and crew engineer Dmitry Smirnov used all available fire extinguishers on site, but even after the extinguishers were exhausted and the power cut, the fire was still not out.

"We put out the rest by putting water on the flames," Orenstein recalled.

The four-person crew was barely able to deal with the emergency, he added.

"Six or seven [people], to me, seems realistic as the adequate number of people to handle a situation like this most effectively."

The middle of the greenhouse, which was called the GreenHab, was destroyed. An investigation by the fire marshal determined two days later that an electrical heater caused the fire, which was ruled an accident.

The heater was set up close to some wooden shelves that had likely dried out over more than 10 years of use, said Orenstein, who is also the volunteer MDRS GreenHab coordinator.

Damage inside the Mars Desert Research Station GreenHab following a fire on Dec. 29, 2014. 

Credit: Nick Orenstein

In response to a 911 call, the Lane County sheriff came to MDRS later on Dec. 29, after the crew had successfully fought the fire.

NB: The isolated location of the facility means it usually takes some time for emergency services to arrive.

The sheriff did a preliminary investigation and confirmed that nobody was hurt, Orenstein said.

Orenstein's crew, the 146th one to use the habitat, decided it was best to stay in Hanksville temporarily, for two reasons, there were no fire extinguishers left at the research station, and there was some concern about chemical contamination in the habitat from the fire.

"My responsibilities for the next few days were to look after the crew and to make sure that they were OK," Orenstein said.

"Essentially, it was a post-tramautic stress therapy session there. We were making sure we were all OK, and looking out for each other."

MDRS director Shannon Rupert and a few other MDRS officials did extra cleanup before the next crew arrived, and Orenstein went back to the facility briefly for the Crew 147 handover later in January.

A temporary tentlike greenhouse is now available for experiments to go forward this season, Rupert added.

"It's devastating because it's a loss of a functional component of the campus," Rupert told reporters.

"But it could have been so much worse. Everyone was safe. That was the main thing. Everybody got out."

ESA Rosetta Mission: COSIMA collects and analyses Comet 67/P Dust Particles

Two examples of dust grains collected by ESA Rosetta's COmetary Secondary Ion Mass Analyser, (COSIMA) instrument in the period 25-31 October 2014. 

Both grains were collected at a distance of 10-20 km from the comet nucleus. 

Image (a) shows a dust particle (named by the COSIMA team as Eloi) that crumbled into a rubble pile when collected; (b) shows a dust particle that shattered (named Arvid). 

For both grains, the image is shown twice under two different grazing illumination conditions: the top image is illuminated from the right, the bottom image from the left. 

The brightness is adjusted to emphasise the shadows, in order to determine the height of the dust grain. Eloi therefore reaches about 0.1 mm above the target plate; Arvid about 0.06 mm. 

The two small grains at the far right of image (b) are not part of the shattered cluster. The fact that the grains broke apart so easily means their individual parts are not well glued together. 

If they contained ice they would not shatter; instead, the icy component would evaporate off the grain shortly after touching the collecting plate, leaving voids in what remained. 

By comparison, if a pure water-ice grain had struck the detector, then only a dark patch would have been seen. 

These 'fluffy' grains are thought to originate from the dusty layer built up on the comet's surface since its last close approach to the Sun, and will soon be lost into the coma. 

Image courtesy ESA /Rosetta et al

ESA's Rosetta mission is providing unique insight into the life cycle of a comet's dusty surface, watching 67P/Churyumov-Gerasimenko as it sheds the dusty coat it has accumulated over the past four years.

The COmetary Secondary Ion Mass Analyser, (COSIMA), is one of Rosetta's three dust analysis experiments. It started collecting, imaging and measuring the composition of dust particles shortly after the spacecraft arrived at the comet in August 2014.

Results from the first analysis of its data are reported in the journal Nature. "Comet 67P/Churyumov-Gerasimenko sheds dust coat accumulated over the past four years" - Rita Schulz et al. Nature (2015) doi:10.1038/nature14159

The study covers August to October, when the comet moved along its orbit between about 535 million kilometres to 450 million kilometres from the Sun. Rosetta spent the most of this time orbiting the comet at distances of 30 km or less.

The scientists looked at the way that many large dust grains broke apart when they were collected on the instrument's target plate, typically at low speeds of 1-10 m/s.

The grains, which were originally at least 0.05 mm across, fragmented or shattered upon collection.

The fact that they broke apart so easily means that the individual parts were not well bound together. Moreover, if they had contained ice, they would not have shattered.

Instead, the icy component would have evaporated off the grain shortly after touching the collecting plate, leaving voids in what remained.

By comparison, if a pure water-ice grain had struck the detector, then only a dark patch would have been seen.

The dust particles were found to be rich in sodium, sharing the characteristics of 'interplanetary dust particles'.

These are found in meteor streams originating from comets, including the annual Perseids from Comet 109P/Swift-Tuttle and the Leonids from 55P/Tempel-Tuttle.

"We found that the dust particles released first when the comet started to become active again are 'fluffy'.

They don't contain ice, but they do contain a lot of sodium. We have found the parent material of interplanetary dust particles," says lead author Rita Schulz of ESA's Scientific Support Office.

The scientists believe that the grains detected were stranded on the comet's surface after its last perihelion passage, when the flow of gas away from the surface had subsided and was no longer sufficient to lift dust grains from the surface.

While the dust was confined to the surface, the gas continued evaporating at a very low level, coming from ever deeper below the surface during the years that the comet travelled furthest from the Sun.

Effectively, the comet nucleus was 'drying out' on the surface and just below it.

"We believe that these 'fluffy' grains collected by Rosetta originated from the dusty layer built up on the comet's surface since its last close approach to the Sun," explains Martin Hilchenbach, COSIMA principal investigator at the Max-Planck Institute for Solar System research in Germany.

"This layer is being removed as the activity of the comet is increasing again. We see this layer being removed, and we expect it to evolve into a more ice-rich phase in the coming months."

The comet is on a 6.5-year circuit around the Sun, and is moving towards its closest approach in August of this year.

At that point, Rosetta and the comet will be 186 million kilometres from the Sun, between the orbits of Earth and Mars.

As the comet warms, the outflow of gases is increasing and the grains making up the dry surface layers are being lifted into the inner atmosphere, or coma.

Eventually, the incoming solar energy will be high enough to remove all of this old dust, leaving fresher material exposed at the surface.

"In fact, much of the comet's dust mantle should actually be lost by now, and we will soon be looking at grains with very different properties," says Rita.

"Rosetta's dust observations close to the comet nucleus are crucial in helping us to link together what is happening at the very small scale with what we see at much larger scales, as dust is lost into the comet's coma and tail," says Matt Taylor, ESA's Rosetta project scientist.

"For these observations, it really is a case of "watch this space" as we continue to watch in real time how the comet evolves as it approaches the Sun along its orbit over the coming months."

Tuesday, January 27, 2015

ESA Rosetta: Fissure spanning 100 metres discovered on Comet 67/P

A fissure spanning over 100 meters across the neck of Rosetta’s comet 67P raises the question of if, or when, the comet will break up. 

The fissure is part of released studies by Rosetta scientists in the journal Science. 

Credit: ESA/Rosetta, Illustration, T.Reyes

Not all comets break up as they vent and age, but for ESA Rosetta's comet 67P, the Rubber Duckie comet, a crack in the neck raises concerns.

Some comets may just fizzle and uniformly expel their volatiles throughout their surfaces. They may become like puffballs, shrink some but remain intact.

Comet 67P is the other extreme. The expulsion of volatile material has led to a shape and a point of no return; it is destined to break in two.

The fissure is part of the analysis in a new set of science papers published this week.

The images show a fissure spanning a few hundred meters across the neck of the two lobe comet.

The fissure is just one of the many incredible features on Comet 67P and is reported in research articles released in the January 22, 2015, edition of the journal Science.

Left: A map looking at the northern (right-hand rule, positive,) pole of 67P showing the total energy received from the Sun per rotation on 6 August 2014. 

The base of the neck (Hapi) receives ~15% less energy than the most illuminated region, 3.5 × 106 J m-2 (per rotation). 

If self-heating were not included, the base of the neck would receive ~30% less total energy. 

Right: Similar to the left panel but showing total energy received over an entire orbital period in J m-2 (per orbit). 

Credit:ESA

What it means is not certain, but Rosetta team scientists have stated that flexing of the comet might be causing the fissure.

As the comet approaches the Sun, the solar radiation is raising the temperature of the surface material.

Like all materials, the comet's will expand and contract with temperature. And diurnal (daily) changes in the tidal forces from the Sun is a factor, too.'

The crack, or fissure, could spell the beginning of the end for comet 67P/Churyumov–Gerasimenko. It is located in the neck area, in the region named Hapi, between the two lobes that make 67P appear so much like a Rubber Duck from a distance.

The fissure could represent a focal point of many properties and forces at work, such as the rotation rate and axis – basically head over heels of the comet.

The fissure lies in the most active area at present, and possibly the most active area overall.

Though the Hapi region appears to receive nearly constant sunlight, at this time, Rosetta measurements (below) show otherwise – receiving 15% less sunlight than elsewhere.

Top left: The Hathor cliff face is to the right in this view. The aligned linear structures can be clearly seen. 

The smooth Hapi region is seen at the base of the Hathor cliff. Boulders are prevalent along the long axis of the Hapi region. 

Bottom left and right: Crack in the Hapi region. 

The left panel shows the crack (indicated by red arrows) extending across Hapi and beyond. 

The right panel shows the crack where it has left Hapi and is extending into Anuket, with Seth at the uppermost left and Hapi in the lower left. 

Credit: ESA/Rosetta

Sunlight and heating are major factors and the neck likely experiences the greatest mechanical stresses, internal torques, from heating or tidal forces from the sun as it rotates and approaches perihelion.

Rosetta scientists are still not certain whether 67P is two bodies in contact, a contact binary, or a shape that formed from material expelled about the neck area leading to its narrowing.

The Philae lander's MUPUS thermal sensor measured a temperature of –153°C (–243°F) at the landing site, while VIRTIS, an instrument on the primary spacecraft Rosetta, has measured -70°C (-94°F) at present.

These temperatures will rise as perihelion is reached on August 13, 2015, at a distance of 1.2432 A.U. (24% further from the Sun than Earth). At present – January 23rd – 67P is 2.486 A.U. from the Sun (2 1/2 times farther from the Sun than Earth).

While not a close approach to the Sun for a comet, the Solar radiation intensity will increase by 4 times between the present (January 2014) and perihelion in August.

Stresses due to temperature changes from diurnal variations, the changing Sun angle during perihelion approach, from loss of material, and finally from changes in the tidal forces on a daily basis (12.4043 hours) may lead to changes in the fissure causing it to possibly widen or increase in length.

Rosetta will continue escorting the comet and delivering images of the whole surface that will give Rosetta scientists the observations and measurements to determine 67P/Churyumov–Gerasimenko's condition now and its fate in the longer term.

Read the full article here

Mexico Volcano of Fire eruption caught on camera - Video



Dramatic video caught on webcam showed eruptions with clouds of smoke rising above the crater of the Volcan del Fuego (Volcano of Fire), set between the states of Colima and Jalisco.

Three separate bursts were seen on Wednesday (January 21), Sunday (January 25) with a nocturnal one on Monday (January 26). Webcams de Mexico.com captured the dramatic images.

The 9,939-feet above sea-level (3,860-meters) Volcan del Fuego, one of Mexico's most active, has frequent moderate explosions.

Activity at the volcano was also reported in January.

Canadian Space Technology to Help Sick Children



Surgeons would have us believe that nothing rivals the dexterity of a good surgeon's hands, but humans being humans, fatigue or even tremors after a long day at the hospital can make things challenging, especially when operating on small children.

That is why Toronto's SickKids Centre for Image-Guided Innovation & Therapeutic Intervention (CIGITI) turned to the Canadian space technology behind Canadarm, Canadarm2 and Dextre and partnered with MacDonald, Dettwiler and Associates Ltd. (MDA) to develop KidsArm.

KidsArm
KidsArm platform with biopsy tool attached.

Image Credit: MDA and CIGITI

The third prototype of KidsArm, the first image-guided robotic surgical arm in the world specifically designed for pediatric surgery, is currently being tested at SickKids Hospital, and researchers are hoping that the technology might soon lend a helping hand to surgeons around the country.

While more testing is needed, the robot is also promising for fetal, cardiac, neurological and urological surgeries.

The suturing tool demonstrates image-guided anastomosis, which means the connecting of parts such as vessels. 

The target on the top of the tool is used to lead the tool's tip. 

This is the same technology used to track the robotic systems on the space shuttle and the International Space Station.

Image Credit: MDA and CIGITI

Using a pair of hand controllers in conjunction with high-precision, real-time imaging technology, surgeons can pinpoint the area of concern to make it easier to reconnect delicate vessels, for example.

KidsArm is also equipped with miniaturized dexterous tools that can cut, coagulate, apply suction, or use a laser.

It is capable of working 10 times faster and with more accuracy than a surgeon's hands when performing intricate procedures.

Advanced technologies such as imaged-based tissue tracking and robotic assistance select and track sutures so that surgeons can compensate for the tissue motion that sometimes makes these surgeries difficult.

A stereo camera generates a 3D point cloud, a set of data points that guide the tool tip and apply a series of sutures. KidsArm pushes the envelope using advanced imaging to identify suture locations.

This allows the surgeon to automate the suturing of small vessels and other microsurgical tasks.

The precision required by KidsArm has to be at least 10 times better than what DEXTRE is able to achieve.

CSA DEXTRE on the ISS
To face this technical challenge, the MDA team adopted the virtual decomposition control (VDC) approach developed by Canadian Space Agency (CSA) engineer Wen-Hong Zhu.

Wen-Hong Zhu
Thanks to this technology, KidsArm is capable of performing intricate procedures such as the suturing of blood vessels and tissues 10 times faster and with more accuracy than a surgeon's hands.

The VDC is a Canadian game-changing technology for precision control of future medical manipulators and space manipulators.

In terms of robotics, the team used a combination of industrial robots, control electronics, cameras and haptics (force-feedback controllers).

The control software evolved directly from the Dextre and Canadarm programs at MDA, and the vision was adapted from their satellite navigation work for the CSA.

One day, this technology may help by making medical procedures on children less invasive and less painful, allowing them to return home faster... so that kids can be kids.

Monday, January 26, 2015

Asteroid 2004 BL86: NEO That Flew Past Earth Has A Companion Moon - Binary



This movie of asteroid 2004 BL86 was generated from data collected by NASA's Deep Space Network antenna at Goldstone, California, on Jan. 26, 2015. Twenty individual images were used.

Credit: NASA

Scientists working with NASA's 230-foot-wide (70-meter) Deep Space Network antenna at Goldstone, California, have released the first radar images of asteroid 2004 BL86.

The images show the asteroid, which made its closest approach on Jan. 26, 2015 at 8:19 a.m. PST (11:19 a.m. EST) at a distance of about 745,000 miles (1.2 million kilometers, or 3.1 times the distance from Earth to the moon), has its own small moon.

The 20 individual images used in the movie were generated from data collected at Goldstone on Jan. 26, 2015.

They show the primary body is approximately 1,100 feet (325 meters) across and has a small moon approximately 230 feet (70 meters) across.

In the near-Earth population, about 16 percent of asteroids that are about 655 feet (200 meters) or larger are a binary (the primary asteroid with a smaller asteroid moon orbiting it) or even triple systems (two moons).

The resolution on the radar images is 13 feet (4 meters) per pixel.

The trajectory of asteroid 2004 BL86 is well understood. Monday's flyby was the closest approach the asteroid will make to Earth for at least the next two centuries.

It is also the closest a known asteroid this size will come to Earth until asteroid 1999 AN10 flies past our planet in 2027.

Asteroid 2004 BL86 was discovered on Jan. 30, 2004, by the Lincoln Near-Earth Asteroid Research (LINEAR) survey in White Sands, New Mexico.

Radar is a powerful technique for studying an asteroid's size, shape, rotation state, surface features and surface roughness, and for improving the calculation of asteroid orbits.

Radar measurements of asteroid distances and velocities often enable computation of asteroid orbits much further into the future than if radar observations weren't available.

NASA places a high priority on tracking asteroids in a vain effort that this will somehow protect our home planet from them.

In fact, the U.S. believes it has the most robust and productive survey and detection program for discovering near-Earth objects (NEOs), and report that to date, taking into account all U.S. assets, both civil and military, they have discovered over 98 percent of the known NEOs.

NASA Galileo Image: Jupiter’s cratered moon, Callisto

The speckled object depicted here is Callisto, Jupiter’s second largest moon. 

This image was taken in May 2001 by NASA’s Galileo spacecraft, which studied Jupiter and its moons from 1995 until 2003.

Similar in appearance to a golf ball, Callisto is covered almost uniformly with pockmarks and craters across its surface, evidence of relentless collisions.

In fact, Callisto is the most heavily cratered object in the Solar System.

The moon is made up of equal parts of rock and ice, the brighter parts of Callisto’s surface are thought to be mainly water ice, whereas the darker patches are regions of highly eroded and ice-poor rocky material.

Callisto is roughly the same size as the planet Mercury, but only about a third of the mass. It is the outermost of Jupiter’s four large Galilean satellites, a group consisting of Io, Europa, Ganymede and Callisto.

It orbits relatively far away from Jupiter compared to these other satellites: it lies 1 880 000 km from the planet, roughly 26 times the radius of the planet itself.

While this in itself is not unusual, our Moon orbits at some 60 times Earth’s radius, the important thing is Callisto’s isolation from its neighbouring moons.

Callisto’s closest neighbour is Ganymede, which orbits 800 000 km closer to Jupiter.

This isolation means that Callisto does not experience any significant tidal forces from Jupiter that would tear at its structure.

It also does not show any signs of geological processes such as volcanism or plate tectonics, which we clearly see on moons that are involved in violent cosmic tugs-of-war with Jupiter, such as Io, Europa and Ganymede.

Callisto remains relatively intact and is a witness of the early Solar System: its surface is the oldest terrain, at a truly ancient four billion years.

This image is the only complete full-colour view of Callisto obtained by Galileo.

The spacecraft provided us with a great deal of information about the jovian system: as well as sending the first probe into the atmosphere of Jupiter, and measuring Jupiter’s composition and dynamics, it observed Io’s volcanism, sent back data supporting the idea of a liquid ocean on Europa, and probed the properties of Ganymede and the subject of this image,

Callisto. It also managed to observe the famous Comet Shoemaker–Levy 9 colliding with Jupiter in 1994.

The jovian system will be visited again in the not-too-distant future. In 2016, NASA’s Juno spacecraft will arrive at Jupiter and start to beam back images of the planet’s poles.

Later, ESA’s Juice, short for JUpiter ICy moons Explorer, planned for launch in 2022, will tour the system with the aim of making a breakthrough in our knowledge of the giant gaseous planet and its environs, especially the intriguing moons Ganymede, Europa and Callisto.

Sunday, January 25, 2015

Scottish Scientists Slow down Light Particles - Photons

The speed of light is a limit, not a constant, that's what researchers in Glasgow, Scotland, say. A group of them just proved that light can be slowed down, permanently.

Scientists already knew light could be slowed temporarily. Photons change speeds as they pass through glass or water, but when they exit the other side and return to a vacuum (like outer space) they speed back up.

In a new experiment at the University of Glasgow, however, scientists were able to permanently manipulate light's speed by passing photons through a device that alters their structure. The device, created in collaboration with researchers at Heriot-Watt University in Edinburgh, is a filter of sorts that the scientists refer to as a mask.

"That mask looks a little bit like a bull's-eye target," researcher Miles Padgett told reporters. "And that mask patterns the light beam, and we show that it's the patterning of the light beam that slows it down.

"But once that pattern has been imposed, even now the light is no longer in the mask, it's just propagating in free space, the speed is still slow," Padgett added.

In other words, the beam of light is reorganized in a way that slows down each individual photon. When tested in a vacuum next to a regular light beam.

Photons that had been filtered through mask were milliseconds behind in a sprint to the end of the vacuum racetrack.

Researchers, whose latest work was published this week in the journal Science Express, say the findings prove the speed of light is not an absolute, more like a ceiling.

Miles Padgett
The work was carried out by a team from the University of Glasgow’s Optics Group, led by Professor Miles Padgett, working with theoretical physicists led by Stephen Barnett, in partnership with Professor Daniele Faccio from Heriot-Watt’s Institute of Photonics and Quantum Sciences.

Daniele Faccio
Professor Faccio said, “The speed of light is a universal constant and plays a central role in our understanding of the Universe and Einstein's theory of relativity."

"The exciting discovery here is that this speed is the true speed of light only for plane waves, that is waves that are perfectly flat."

"In everyday situations however, we interact with light that is not a plane wave but has some kind of structure on it."

"The presence of this structure (think of the light beam emitted from a laser pointer) forces the light to actually move slower."

"There are lots of technicalities involved in the actual experiments used to measure this slow-down, but the result is widely applicable. A very appropriate discovery for the 2015 international year of light".

Professor Padgett added, “It might seem surprising that light can be made to travel more slowly like this, but the effect has a solid theoretical foundation and we’re confident that our observations are correct.

“The results give us a new way to think about the properties of light and we’re keen to continue exploring the potential of this discovery in future applications."

"We expect that the effect will be applicable to any wave theory, so a similar slowing could well be created in sound waves, for example.”

More Information
Spatially structured photons that travel in free space slower than the speed of light - Science Magazine January 22 2015 - Science DOI: 10.1126/science.aaa3035