Monday, November 15, 2010
Chandra X-ray Image: Youbgest Black Hole found
This composite image shows a supernova within the galaxy M100 that may contain the youngest known black hole in our cosmic neighborhood.
In this image, Chandra’s X-rays are colored gold, while optical data from ESO’s Very Large Telescope are shown in red, green, and blue, and infrared data from Spitzer are red. The location of the supernova, known as SN 1979C, is labeled.
SN 1979C was first reported to be seen by an amateur astronomer in 1979. The galaxy M100 is located in the Virgo Cluster about 50 million light years from Earth.
This approximately 30-year age, plus its relatively close distance, makes SN 1979C the nearest example where the birth of a black hole has been observed, if the interpretation by the scientists is correct.
Data from Chandra, as well as NASA's Swift, the European Space Agency's XMM-Newton and the German ROSAT observatory revealed a bright source of X-rays that has remained steady for the 12 years from 1995 to 2007 over which it has been observed.
This behavior and the X-ray spectrum, or distribution of X-rays with energy, support the idea that the object in SN 1979C is a black hole being fed either by material falling back into the black hole after the supernova, or from a binary companion.
The scientists think that SN 1979C formed when a star about 20 times more massive than the Sun collapsed. It was a particular type of supernova where the exploded star had ejected some, but not all of its outer, hydrogen-rich envelope before the explosion, so it is unlikely to have been associated with a gamma-ray burst (GRB).
Supernovas have sometimes been associated with GRBs, but only where the exploded star had completely lost its hydrogen envelope. Since most black holes should form when the core of a star collapses and a gamma-ray burst is not produced, this may be the first time that the common way of making a black hole has been observed.
The very young age of about 30 years for the black hole is the observed value, that is the age of the remnant as it appears in the image. Astronomers quote ages in this way because of the observational nature of their field, where their knowledge of the Universe is based almost entirely on the electromagnetic radiation received by telescopes.
Credits: X-ray: NASA/CXC/SAO/D.Patnaude et al, Optical: ESO/VLT, Infrared: NASA/JPL/Caltech
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment