Dark energy is a mysterious force that pervades all space, acting as a "push" to accelerate the Universe's expansion. Despite being 70 percent of the Universe, dark energy was only discovered in 1998 by two teams observing Type Ia supernovae. A Type 1a supernova is a cataclysmic explosion of a white dwarf star.
These supernovae are currently the best way to measure dark energy because they are visible across intergalactic space. Also, they can function as "standard candles" in distant galaxies since the intrinsic brightness is known.
Just as drivers estimate the distance to oncoming cars at night from the brightness of their headlights, measuring the apparent brightness of a supernova yields its distance (fainter is farther). Measuring distances tracks the effect of dark energy on the expansion of the Universe.
The best way of measuring dark energy just got better, thanks to a new study of Type Ia supernovae led by Ryan Foley of the Harvard-Smithsonian Center for Astrophysics.
He has found a way to correct for small variations in the appearance of these supernovae, so that they become even better standard candles. The key is to sort the supernovae based on their color.
"Dark energy is the biggest mystery in physics and astronomy today. Now, we have a better way to tackle it," said Foley, who is a Clay Fellow at the Center. He presented his findings in a press conference at the 217th meeting of the American Astronomical Society.
The new tool also will help astronomers to firm up the cosmic distance scale by providing more accurate distances to faraway galaxies.
Monday, January 17, 2011
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment