A discovery, made by a team of scientists from the UK and US, helps explain the origins of a key component of marine sediments, fine-grained carbonates, the origins of which are often problematic to resolve.
Published in The Proceedings of the National Academy of Science (PNAS), the study describes the discovery of an entirely new source of marine carbonate and one that has major implications for understanding the origins of the sediments that form ancient limestone and chalk deposits.
Until now it was believed that the fine-grained carbonates that constitute a major component of marine carbonate sediments were derived primarily from either direct precipitation out of seawater or from the breakdown of the skeletons of marine invertebrates and algae.
This study, funded by the UK's Natural Environment Research Council (NERC), shows that large volumes of carbonate crystals are precipitated inside the intestines of marine fish and are then excreted at very high rates, releasing this lesser-known, non-skeletal carbonate into the marine environment.
Although this material comes from the guts of marine fish, it is derived from calcium in the seawater they drink rather than any undigested product of their food.
However, the form and fate of these crystals after excretion by the fish was unknown. The researchers therefore conducted a "needle in a haystack" search, to look for microscopic crystals that are unique to fish within areas that are already rich in carbonate crystals from other organisms.
The study was undertaken in The Bahamas, famous for its white carbonate sands and muds, where the preservation of such crystals in shallow sediments was predicted to be good.
Measurements made on fish that were local to The Bahamas yielded conservative estimates that they produce in excess of 6 million kg of carbonate each year across the region, equivalent to an estimated 14% of its total carbonate mud production.
Tuesday, March 8, 2011
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment