Thursday, May 26, 2011

NASA: Thermal control and Electronic Cooling pump

The more advanced the electronics, the more power they use. The more power they use, the hotter they get.

The hotter they get, the more likely they’ll overheat. It doesn’t take a rocket scientist to understand what typically happens next: The electronics fry.

In the world of electronics, thermal control is always one of the limiting factors -- particularly in space where there is no air to help cool down electronic components.

However, Jeffrey Didion, a thermal engineer at the NASA Goddard Space Flight Center in Greenbelt, Md., and Dr. Jamal Seyed-Yagoobi, a professor at the Illinois Institute of Technology in Chicago, Ill., have collaborated to develop a technology that may overcome current limitations. They have formed technical partnerships with the U.S. Air Force and National Renewable Energy Laboratory to address the thermal-control concerns.

Called electrohydrodynamic (EHD)-based thermal control, the technology promises to make it easier and more efficient to remove heat from small spaces -- a particular challenge for engineers building advanced space instruments and microprocessors that could fail if the heat they generate is not removed.

"Today, higher-power computer chips are available, but they generate too much heat," said Didion, who is leading the technology-development effort also involving Matthew Showalter, associate branch chief of Goddard’s Advanced Manufacturing Branch, and Mario Martins of Edge Space Systems, an engineering company specializing in thermal systems in Glenelg, Md. "If I can carry away more heat, engineers will be able to use higher-power components. In other words, they will be able to do more things."

The project, a joint activity between NASA Goddard and its partners, received support from the Goddard Internal Research and Development (IRAD) program, which funds the development of promising new technologies that could advance NASA’s scientific and exploration goals. It is being demonstrated in June on a Terrier-Improved Orion sounding rocket mission, which also is flying the Small Rocket/Spacecraft Technology (SMART) platform, a microsatellite also developed at Goddard. This new microsatellite measures about 16 inches in diameter and was specifically designed to give scientific users less expensive access to space. (Read the related press release.)

No comments:

Post a Comment