Saturday, September 17, 2011
NASA GRAPE: Balloon-based experiment to measure gamma rays 6,500 light years distant
Beginning Sunday, September 18, 2011 at NASA’s launch facility in Fort Sumner, New Mexico, space scientists from the University of New Hampshire will attempt to send a balloon up to 130,000 feet with a one-ton instrument payload to measure gamma rays from the Crab Pulsar, the remains of a supernova explosion that lies 6,500 light years from Earth.
The launch is highly dependent on weather and wind conditions, and the launch window closes at the end of next week.
The Gamma Ray Polarimeter Experiment (GRAPE), which was designed and built at the Space Science Center within the UNH Institute for the Study of Earth, Oceans, and Space (EOS), is an effort to apply a new type of detector technology to the study of celestial gamma rays.
Specifically, the goal of the GRAPE project is to study the polarization of gamma rays from celestial sources. “Polarized” radiation vibrates in a preferred direction, and the extent of that polarisation can provide clues to how the radiation was generated, in essence serving as a probe of the source.
Gamma rays, such as those emitted from the Crab Pulsar, are generally produced from the interactions of a highly accelerated beam of subatomic particles – massive ejections of high-energy particles that are thought to take the form of a narrow jet moving outward at nearly the speed of light.
“We think that an accelerated beam of particles is the source of the high-energy radiation from the Crab Pulsar, but the structure of that beam and the mechanism by which the radiation is generated is not entirely clear,” says mission lead scientist Mark McConnell, a professor in the SSC and chair of the UNH department of physics.
Physorg.com: Further information on NASA GRAPE and other Balloon based gamma-ray detection experiments.
Balloon-based experiment to measure gamma rays 6,500 light years distant | ScienceBlog.com
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment