This view shows a simulation of how a gas cloud that has been observed approaching the supermassive black hole at the center of the galaxy may break apart over the next few years.
This is the first time ever that the approach of such a doomed cloud to a supermassive black hole has been observed and it is expected to break up completely during 2013.
The remains of the gas cloud are shown in red and yellow, with the cloud's orbit marked in red. The stars orbiting the black hole are also shown along with blue lines marking their orbits. This view simulates the expected positions of the stars and gas cloud in the year 2021. Credit: ESO/MPE/Marc Schartmann
This is the first time ever that the approach of such a doomed cloud to a supermassive black hole has been observed and it is expected to break up completely during 2013.
The remains of the gas cloud are shown in red and yellow, with the cloud's orbit marked in red. The stars orbiting the black hole are also shown along with blue lines marking their orbits. This view simulates the expected positions of the stars and gas cloud in the year 2021. Credit: ESO/MPE/Marc Schartmann
The normally quiet neighbourhood around the massive black hole at the center of our Milky Way Galaxy is being invaded by a gas cloud that is destined in just a few years to be ripped, shredded and largely eaten.
Many, if not all, galaxies have massive black holes at their centers. But this supermassive black hole is the only one close enough for astronomers to study in detail, so the violent encounter is a unique chance to observe what until now has only been theorised: how a black hole gulps gas, dust and stars as it grows ever bigger.
"When we look at the black holes in the centers of other galaxies, we see them get bright and then fade, but we never know what is actually happening," said Eliot Quataert, a theoretical astrophysicist and University of California, Berkeley professor of astronomy.
"This is an unprecedented opportunity to obtain unique observations and insight into the processes that go on as gas falls into a black hole, heats up and emits light. It's a neat window onto a black hole that's actually capturing gas as it spirals in."
"The next two years will be very interesting and should provide us with extremely valuable information on the behaviour of matter around such massive objects, and its ultimate fate," said Reinhard Genzel, professor of physics at both UC Berkeley and the Max Planck Institute for Extraterrestrial Physics (MPE) in Garching, Germany.
The discovery by Genzel; Stefan Gillessen of the MPE; Quataert and colleagues from Germany, Chile and Illinois will be reported online Wednesday, Dec. 14, in advance of the Jan. 5 publication of the news in the British journal Nature.
No comments:
Post a Comment