Wednesday, December 7, 2011

ESA ESO VLT: Newborn Massive Stars Dwarf Full-Grown Stellar Giants

Artist’s impression illustrating the formation process of massive stars. 

At the end of the formation process, the surrounding accretion disk disappears, revealing the surface of the young star. 

At this phase the young massive star is much larger than when it has reached a stable equilibrium.
CREDIT: Lucas Ellerbroek/Lex Kaper University of Amsterdam

Massive stars generally start out life much bigger than they will be in maturity, a new study seems to confirm.

Astronomers from the University of Amsterdam got a rare look at a massive star in the process of forming and found that the star will contract until it has reached a stable equilibrium.

The researchers studied the young star B275, which lies in the Omega Nebula, also called the Swan Nebula or Messier 17. This hotbed of gas, dust and young stars lies approximately 5,500 light-years from Earth, in the direction of the Sagittarius constellation.

Astronomers typically struggle to obtain clear observations of a massive star as it is forming, since newborn stars are deeply embedded and obscured in their parent clouds of gas and dust.

Peering through the haze
To lift the veil on the process of star formation, the researchers sifted through ultraviolet and infrared data collected from a powerful spectrograph instrument, called the X-shooter, on the European Space Agency's Very Large Telescope at the Paranal Observatory in Chile.

"The large-wavelength coverage of X-shooter provides the opportunity to determine many stellar properties at once, like the surface temperature, size, and the presence of a disk," study lead author Bram Ochsendorf said in a statement.

Ochsendorf analyzed the data as part of his master's research project at the University of Amsterdam.


The results indicate that B275 is about three times larger than stars that are about seven times more massive than our sun and have reached the so-called main sequence phase of their lives.

The main sequence phase represents a specific stage of stellar evolution in which a star burns hydrogen into helium. (Our own sun is currently in its main sequence.)

The team's findings appear to confirm a theory of star formation predicting that a newly formed massive star will contract until it reaches a more stable state.

No comments:

Post a Comment