The pulsar (L) is orbited by a hot white dwarf star (C) both of which are orbited by a cooler, distant white dwarf (R)
Credit: NRAO
Astronomers using the National Science Foundation's Green Bank Telescope (GBT) have discovered a unique stellar system of two white dwarf stars and a superdense neutron star, all packed within a space smaller than Earth's orbit around the Sun.
The results appear in Nature journal and will be presented at the 223rd American Astronomical Society meeting.
The closeness of the stars, combined with their nature, has allowed the scientists to make the best measurements yet of the complex gravitational interactions in such a system.
In addition, detailed studies of this system may provide a key clue for resolving one of the principal outstanding problems of fundamental physics—the true nature of gravity.
"This triple system gives us a natural cosmic laboratory far better than anything found before for learning exactly how such three-body systems work and potentially for detecting problems with General Relativity that physicists expect to see under extreme conditions," said Scott Ransom of the National Radio Astronomy Observatory (NRAO).
West Virginia University graduate student Jason Boyles (now at Western Kentucky University) originally uncovered the pulsar as part of a large-scale search for pulsars with the GBT.
Pulsars are neutron stars that emit lighthouse-like beams of radio waves that rapidly sweep through space as the object spins on its axis.
One of the search's discoveries was a pulsar some 4200 light-years from Earth, spinning nearly 366 times per second.
Such rapidly-spinning pulsars are called millisecond pulsars, and can be used by astronomers as precision tools for studying a variety of phenomena, including searches for the elusive gravitational waves.
Subsequent observations showed that the pulsar is in a close orbit with a white dwarf star, and that pair is in orbit with another, more-distant white dwarf.
"This is the first millisecond pulsar found in such a system, and we immediately recognized that it provides us a tremendous opportunity to study the effects and nature of gravity," Ransom said.
The scientists began an intensive observational program using the GBT, the Arecibo radio telescope in Puerto Rico, and the Westerbork Synthesis Radio Telescope in the Netherlands.
They also studied the system using data from the Sloan Digital Sky Survey, the GALEX satellite, the WIYN telescope on Kitt Peak, Arizona, and the Spitzer Space Telescope.
"The gravitational perturbations imposed on each member of this system by the others are incredibly pure and strong," Ransom said.
"The millisecond pulsar serves as an extremely powerful tool for measuring those perturbations incredibly well," he added.
More information: Nature DOI: 10.1038/nature12917
Credit: NRAO
Astronomers using the National Science Foundation's Green Bank Telescope (GBT) have discovered a unique stellar system of two white dwarf stars and a superdense neutron star, all packed within a space smaller than Earth's orbit around the Sun.
The results appear in Nature journal and will be presented at the 223rd American Astronomical Society meeting.
The closeness of the stars, combined with their nature, has allowed the scientists to make the best measurements yet of the complex gravitational interactions in such a system.
In addition, detailed studies of this system may provide a key clue for resolving one of the principal outstanding problems of fundamental physics—the true nature of gravity.
"This triple system gives us a natural cosmic laboratory far better than anything found before for learning exactly how such three-body systems work and potentially for detecting problems with General Relativity that physicists expect to see under extreme conditions," said Scott Ransom of the National Radio Astronomy Observatory (NRAO).
West Virginia University graduate student Jason Boyles (now at Western Kentucky University) originally uncovered the pulsar as part of a large-scale search for pulsars with the GBT.
Pulsars are neutron stars that emit lighthouse-like beams of radio waves that rapidly sweep through space as the object spins on its axis.
GALEX satellite |
Such rapidly-spinning pulsars are called millisecond pulsars, and can be used by astronomers as precision tools for studying a variety of phenomena, including searches for the elusive gravitational waves.
Subsequent observations showed that the pulsar is in a close orbit with a white dwarf star, and that pair is in orbit with another, more-distant white dwarf.
WIYN NRAO Telescope |
The scientists began an intensive observational program using the GBT, the Arecibo radio telescope in Puerto Rico, and the Westerbork Synthesis Radio Telescope in the Netherlands.
They also studied the system using data from the Sloan Digital Sky Survey, the GALEX satellite, the WIYN telescope on Kitt Peak, Arizona, and the Spitzer Space Telescope.
"The gravitational perturbations imposed on each member of this system by the others are incredibly pure and strong," Ransom said.
"The millisecond pulsar serves as an extremely powerful tool for measuring those perturbations incredibly well," he added.
More information: Nature DOI: 10.1038/nature12917
No comments:
Post a Comment