In a first-ever demonstration of a two-way interaction between a primate brain and a virtual body, two monkeys trained at the Duke University Center for Neuroengineering learned to employ brain activity alone to move an avatar hand and identify the texture of virtual objects.
“Someday in the near future, quadriplegic patients will take advantage of this technology not only to move their arms and hands and to walk again, but also to sense the texture of objects placed in their hands, or experience the nuances of the terrain on which they stroll with the help of a wearable robotic exoskeleton,” said study leader Miguel Nicolelis, MD, PhD, professor of neurobiology at Duke University Medical Center and co-director of the Duke Center for Neuroengineering.
Without moving any part of their real bodies, the monkeys used their electrical brain activity to direct the virtual hands of an avatar to the surface of virtual objects and, upon contact, were able to differentiate their textures.
Although the virtual objects employed in this study were visually identical, they were designed to have different artificial textures that could only be detected if the animals explored them with virtual hands controlled directly by their brain’s electrical activity.
The texture of the virtual objects was expressed as a pattern of minute electrical signals transmitted to the monkeys’ brains. Three different electrical patterns corresponded to each of three different object textures.
Because no part of the animal’s real body was involved in the operation of this brain-machine-brain interface, these experiments suggest that in the future patients severely paralyzed due to a spinal cord lesion may take advantage of this technology, not only to regain mobility, but also to have their sense of touch restored, said Nicolelis, who was senior author of the study published in the journal Nature on October 5, 2011.
“This is the first demonstration of a brain-machine-brain interface (BMBI) that establishes a direct, bidirectional link between a brain and a virtual body,” Nicolelis said
“In this BMBI, the virtual body is controlled directly by the animal’s brain activity, while its virtual hand generates tactile feedback information that is signaled via direct electrical microstimulation of another region of the animal’s cortex.”
“We hope that in the next few years this technology could help to restore a more autonomous life to many patients who are currently locked in without being able to move or experience any tactile sensation of the surrounding world,” Nicolelis said.
“This is also the first time we’ve observed a brain controlling a virtual arm that explores objects while the brain simultaneously receives electrical feedback signals that describe the fine texture of objects ‘touched’ by the monkey’s newly acquired virtual hand,” Nicolelis said.
Read more of this article here
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment