In May 16, 2008, Newbery Crater project drilling manager Fred Wilson stands near a drilling rig at the Newberry Crater geothermal project as he describes the work near LaPine, Ore.
Geothermal energy developers plan to pump 24 million gallons of water into the side of the dormant Central Oregon volcano this summer to demonstrate new technology they hope will give a boost to a green energy sector that has yet to live up to its promise. (AP Photo/Don Ryan, File)
They hope the water comes back to the surface fast enough and hot enough to create cheap, clean electricity that isn't dependent on sunny skies or stiff breezes - without shaking the earth and rattling the nerves of nearby residents.
Renewable energy has been held back by cheap natural gas, weak demand for power and waning political concern over global warming. Efforts to use the earth's heat to generate power, known as geothermal energy, have been further hampered by technical problems and worries that tapping it can cause earthquakes.
Even so, the federal government, Google and other investors are interested enough to bet $43 million on the Oregon project. They are helping AltaRock Energy, Inc. of Seattle and Davenport Newberry Holdings LLC of Stamford, Conn., demonstrate whether the next level in geothermal power development can work on the flanks of Newberrry Volcano, located about 20 miles south of Bend, Ore.
"We know the heat is there," said Susan Petty, president of AltaRock. "The big issue is can we circulate enough water through the system to make it economic."
The heat in the earth's crust has been used to generate power for more than a century. Engineers gather hot water or steam that bubbles near the surface and use it to spin a turbine that creates electricity. Most of those areas have been exploited. The new frontier is places with hot rocks, but no cracks in the rocks or water to deliver the steam.
To tap that heat - and grow geothermal energy from a tiny niche into an important source of green energy - engineers are working on a new technology called Enhanced Geothermal Systems.
"To build geothermal in a big way beyond where it is now requires new technology, and that is where EGS comes in," said Steve Hickman, a research geophysicist with the U.S. Geological Survey in Menlo Park, Calif.
Wells are drilled deep into the rock and water is pumped in, creating tiny fractures in the rock, a process known as hydroshearing.
No comments:
Post a Comment