ESA’s Venus Express spacecraft has discovered that our cloud-covered neighbour spins a little slower than previously measured.
Peering through the dense atmosphere in the infrared, the orbiter found surface features were not quite where they should be.
Using the VIRTIS instrument at infrared wavelengths to penetrate the thick cloud cover, scientists studied surface features and discovered that some were displaced by up to 20 km from where they should be given the accepted rotation rate as measured by NASA’s Magellan orbiter in the early 1990s.
These detailed measurements from orbit are helping scientists determine whether Venus has a solid or liquid core, which will help our understanding of the planet’s creation and how it evolved.
If Venus has a solid core, its mass must be more concentrated towards the centre. In this case, the planet’s rotation would react less to external forces.
The most important of those forces is due to the dense atmosphere – more than 90 times the pressure of Earth’s and high-speed weather systems, which are believed to change the planet’s rotation rate through friction with the surface.
Earth experiences a similar effect, where it is largely caused by wind and tides. The length of an Earth day can change by roughly a millisecond and depends seasonally with wind patterns and temperatures over the course of a year.
In the 1980s and 1990s, the Venera and Magellan orbiters made radar maps of the surface of Venus, long shrouded in mystery as well as a dense, crushing and poisonous atmosphere. These maps gave us our first detailed global view of this unique and hostile world.
Over its four-year mission, Magellan was able to watch features rotate under the spacecraft, allowing scientists to determine the length of the day on Venus as being equal to 243.0185 Earth days. .
However, surface features seen by Venus Express some 16 years later could only be lined up with those observed by Magellan if the length of the Venus day is on average 6.5 minutes longer than Magellan measured.
Peering through the dense atmosphere in the infrared, the orbiter found surface features were not quite where they should be.
Using the VIRTIS instrument at infrared wavelengths to penetrate the thick cloud cover, scientists studied surface features and discovered that some were displaced by up to 20 km from where they should be given the accepted rotation rate as measured by NASA’s Magellan orbiter in the early 1990s.
These detailed measurements from orbit are helping scientists determine whether Venus has a solid or liquid core, which will help our understanding of the planet’s creation and how it evolved.
If Venus has a solid core, its mass must be more concentrated towards the centre. In this case, the planet’s rotation would react less to external forces.
The most important of those forces is due to the dense atmosphere – more than 90 times the pressure of Earth’s and high-speed weather systems, which are believed to change the planet’s rotation rate through friction with the surface.
Earth experiences a similar effect, where it is largely caused by wind and tides. The length of an Earth day can change by roughly a millisecond and depends seasonally with wind patterns and temperatures over the course of a year.
In the 1980s and 1990s, the Venera and Magellan orbiters made radar maps of the surface of Venus, long shrouded in mystery as well as a dense, crushing and poisonous atmosphere. These maps gave us our first detailed global view of this unique and hostile world.
Over its four-year mission, Magellan was able to watch features rotate under the spacecraft, allowing scientists to determine the length of the day on Venus as being equal to 243.0185 Earth days. .
However, surface features seen by Venus Express some 16 years later could only be lined up with those observed by Magellan if the length of the Venus day is on average 6.5 minutes longer than Magellan measured.
No comments:
Post a Comment