Artist's rendition of Earth's radiation belts with the twin Van Allen Probes traveling through them. Credit: NASA
One year after their launch from Cape Canaveral Air Force Station at 4:05 a.m. E DT on Thursday, Aug. 30, 2012, NASA's twin Van Allen Probes have already fundamentally changed how we understand the Van Allen radiation belts above our planet.
Data from the probes have already led to several significant discoveries, some made just days after the special twin spacecraft soared into orbit.
The mission has answered one long-standing question about the nature and behavior of the belts, and revealed that the outer belt can split into two separate belts.
With this first year of discovery and enhancements in operations as a cornerstone, the science teams of the Van Allen Probes (formerly named the Radiation Belt Storm Probes) are looking forward to unlocking further mysteries and advancing our knowledge of particle physics and the dynamics of space plasmas, as well as how to better protect space-based technologies like satellites.
"The science results are coming fast now," says NASA's Mona Kessel, program scientist for the Van Allen Probes.
"Some of the discoveries we've made are going to rewrite the textbooks on the radiation belts. And while those discoveries are fascinating and merit more research, we're still focused on the question we asked when we designed the mission: What are the primary mechanisms of particle loss and acceleration in the belts? We're beginning to answer that now."
The radiation belts are two donut-shaped regions of highly energetic particles trapped in the Earth's magnetic field – the inner, located just above our atmosphere and extending 4,000 miles into space; and the outer, from 8,000 to 26,000 miles out – and are named for their discoverer (as are the probes), the late James A. Van Allen of the University of Iowa.
The belts' makeup and properties have affected both spaceflight and physics research for the past 50 years, and the Van Allen Probes were designed to answer a number of fundamental questions about these harsh regions of space.
One year after their launch from Cape Canaveral Air Force Station at 4:05 a.m. E DT on Thursday, Aug. 30, 2012, NASA's twin Van Allen Probes have already fundamentally changed how we understand the Van Allen radiation belts above our planet.
Data from the probes have already led to several significant discoveries, some made just days after the special twin spacecraft soared into orbit.
The mission has answered one long-standing question about the nature and behavior of the belts, and revealed that the outer belt can split into two separate belts.
With this first year of discovery and enhancements in operations as a cornerstone, the science teams of the Van Allen Probes (formerly named the Radiation Belt Storm Probes) are looking forward to unlocking further mysteries and advancing our knowledge of particle physics and the dynamics of space plasmas, as well as how to better protect space-based technologies like satellites.
"The science results are coming fast now," says NASA's Mona Kessel, program scientist for the Van Allen Probes.
"Some of the discoveries we've made are going to rewrite the textbooks on the radiation belts. And while those discoveries are fascinating and merit more research, we're still focused on the question we asked when we designed the mission: What are the primary mechanisms of particle loss and acceleration in the belts? We're beginning to answer that now."
The radiation belts are two donut-shaped regions of highly energetic particles trapped in the Earth's magnetic field – the inner, located just above our atmosphere and extending 4,000 miles into space; and the outer, from 8,000 to 26,000 miles out – and are named for their discoverer (as are the probes), the late James A. Van Allen of the University of Iowa.
The belts' makeup and properties have affected both spaceflight and physics research for the past 50 years, and the Van Allen Probes were designed to answer a number of fundamental questions about these harsh regions of space.
No comments:
Post a Comment