Main bathymetric features of the Arctic Ocean, taken mainly from Weber 1983 'Maps of the Arctic Basin Sea Floor: A History of Bathymetry and its Interpretation' on a base of a screenshot taken from the Nasa WorldWind software.
Credit: Mikenorton / Wikipedia
A combined team of U.S. and Russian researchers has found that large amounts of methane are bubbling up from the subsea permafrost along the East Siberian Shelf.
In their paper published in the journal Nature Geoscience, the team describes research they've conducted over several years from fishing vessels in the Laptev Sea and other areas along the shelf along with the results of measurements they've made.
North of Russia lies the Arctic Ocean, over time, parts of it have been given different names—one of those the Laptev Sea, lies north of Siberia, and is bounded by peninsulas on both sides.
The sea normally freezes in the winter and thaws in the summer, but the water remains so cold that the seafloor has, at least until recent years, remained frozen.
The researchers in this latest effort have been monitoring the amount of methane released into the sea as the subsea permafrost melts in the summer.
The melting of the subsea permafrost in the Arctic Ocean can't be blamed on modern humans—it's been slowly warming down there for thousands of years—it's just recently however, reached the point where it melts in the summer just enough to allow the methane in it to seep out and bubble up into the sea column above.
The researchers have been seeing record levels of methane in the both seawater and permafrost core samples they've been collecting over the past several years (they also use sonar to measure the density of bubbles emanating into the seawater).
Worse, they have found that methane levels drop dramatically during storms.
This means, the researchers report, that all that methane in the seawater is whipped into the atmosphere, adding to the other greenhouse gasses that are contributing to global warming.
The researchers note that their measurements contradict predictions by others that a massive "pulse" of methane will very soon add as much as 50 billion tonnes of methane to the atmosphere, causing a dramatic spike in global air temperatures.
Instead, they suggest, it appears more likely that the methane will continue to bubble up slowly, contributing to greenhouse gases much as is happening currently—though they do caution that its possible global warming could cause more or bigger storms in the Arctic Ocean, releasing methane on a bigger scale.
More information: Ebullition and storm-induced methane release from the East Siberian Arctic Shelf, Nature Geoscience (2013) DOI: 10.1038/ngeo2007
Credit: Mikenorton / Wikipedia
A combined team of U.S. and Russian researchers has found that large amounts of methane are bubbling up from the subsea permafrost along the East Siberian Shelf.
In their paper published in the journal Nature Geoscience, the team describes research they've conducted over several years from fishing vessels in the Laptev Sea and other areas along the shelf along with the results of measurements they've made.
North of Russia lies the Arctic Ocean, over time, parts of it have been given different names—one of those the Laptev Sea, lies north of Siberia, and is bounded by peninsulas on both sides.
The sea normally freezes in the winter and thaws in the summer, but the water remains so cold that the seafloor has, at least until recent years, remained frozen.
The researchers in this latest effort have been monitoring the amount of methane released into the sea as the subsea permafrost melts in the summer.
The melting of the subsea permafrost in the Arctic Ocean can't be blamed on modern humans—it's been slowly warming down there for thousands of years—it's just recently however, reached the point where it melts in the summer just enough to allow the methane in it to seep out and bubble up into the sea column above.
The researchers have been seeing record levels of methane in the both seawater and permafrost core samples they've been collecting over the past several years (they also use sonar to measure the density of bubbles emanating into the seawater).
Worse, they have found that methane levels drop dramatically during storms.
This means, the researchers report, that all that methane in the seawater is whipped into the atmosphere, adding to the other greenhouse gasses that are contributing to global warming.
The researchers note that their measurements contradict predictions by others that a massive "pulse" of methane will very soon add as much as 50 billion tonnes of methane to the atmosphere, causing a dramatic spike in global air temperatures.
Instead, they suggest, it appears more likely that the methane will continue to bubble up slowly, contributing to greenhouse gases much as is happening currently—though they do caution that its possible global warming could cause more or bigger storms in the Arctic Ocean, releasing methane on a bigger scale.
More information: Ebullition and storm-induced methane release from the East Siberian Arctic Shelf, Nature Geoscience (2013) DOI: 10.1038/ngeo2007
No comments:
Post a Comment