An image of a tabletop-size analogue model (left) shows details of fault systems created by extension that visually match an image by spacecraft Galileo of faulted terrain on Ganymede (right).
Credit: Left Image: Courtesy of Southwest Research Institute;
Right Image: Courtesy of NASA/JPL SSI
Processes that shaped the ridges and troughs on the surface of Jupiter's icy moon Ganymede are likely similar to tectonic processes seen on Earth, according to a team of researchers led by Southwest Research Institute (SwRI).
To arrive at this conclusion, the team subjected physical models made of clay to stretching forces that simulate tectonic action. The results were published in Geophysical Research Letters.
Physical analogue models simulate geologic structures in laboratory settings so that the developmental sequence of various phenomena can be studied as they occur.
The team, including researchers from SwRI, Wheaton College, NASA's Jet Propulsion Laboratory and NuStar Energy LP, created complex patterns of faults in their models, similar to the ridge and trough features seen in some regions of Ganymede.
The models consisted of a "wet clay cake" material possessing brittle characteristics to simulate how the icy moon's lithosphere, the outermost solid shell, responds to stresses by cracking.
The laboratory models suggest that characteristic patterns of ridges and troughs, called grooved terrain on Ganymede, result from its surface being stretched.
"The physical models showed a marked similarity to the surface features observed on Ganymede," said co-author Dr. Danielle Wyrick, a senior research scientist in the SwRI Space Science and Engineering Division.
"From the experiments, it appears that a process in which the crust breaks into separate blocks by large amounts of extension is the primary mechanism for creating these distinct features."
"Physical analogue modeling allows us to simulate the formation of complex three-dimensional geological structures on Ganymede, without actually going to Ganymede," said co-author Dr. David Ferrill, director of the Earth, Material and Planetary Sciences Department in the SwRI Geosciences and Engineering Division.
"These scaled models are able to reproduce the fine geometric details of geologic processes, such as faulting, and to develop and test hypotheses for landscape evolution on planetary bodies."
SwRI researchers previously have used physical analog models to examine the process by which pit crater chains, a series of linear pits, or depressions, develop on Mars, and how magma in the Martian subsurface deforms the surface of the Red Planet.
More information: The paper, "Physical models of grooved terrain tectonics on Ganymede," by D.W. Sims, D.Y. Wyrick, D.A. Ferrill, A.P. Morris, G.C. Collins, R.T. Pappalardo and S.L. Colton, was published by Geophysical Research Letters, 16 June 2014, Volume 41, Issue 11, pages 3774–3778, DOI: 10.1002/2014GL060359
Credit: Left Image: Courtesy of Southwest Research Institute;
Right Image: Courtesy of NASA/JPL SSI
Processes that shaped the ridges and troughs on the surface of Jupiter's icy moon Ganymede are likely similar to tectonic processes seen on Earth, according to a team of researchers led by Southwest Research Institute (SwRI).
To arrive at this conclusion, the team subjected physical models made of clay to stretching forces that simulate tectonic action. The results were published in Geophysical Research Letters.
Physical analogue models simulate geologic structures in laboratory settings so that the developmental sequence of various phenomena can be studied as they occur.
The team, including researchers from SwRI, Wheaton College, NASA's Jet Propulsion Laboratory and NuStar Energy LP, created complex patterns of faults in their models, similar to the ridge and trough features seen in some regions of Ganymede.
The models consisted of a "wet clay cake" material possessing brittle characteristics to simulate how the icy moon's lithosphere, the outermost solid shell, responds to stresses by cracking.
The laboratory models suggest that characteristic patterns of ridges and troughs, called grooved terrain on Ganymede, result from its surface being stretched.
"The physical models showed a marked similarity to the surface features observed on Ganymede," said co-author Dr. Danielle Wyrick, a senior research scientist in the SwRI Space Science and Engineering Division.
"From the experiments, it appears that a process in which the crust breaks into separate blocks by large amounts of extension is the primary mechanism for creating these distinct features."
"Physical analogue modeling allows us to simulate the formation of complex three-dimensional geological structures on Ganymede, without actually going to Ganymede," said co-author Dr. David Ferrill, director of the Earth, Material and Planetary Sciences Department in the SwRI Geosciences and Engineering Division.
"These scaled models are able to reproduce the fine geometric details of geologic processes, such as faulting, and to develop and test hypotheses for landscape evolution on planetary bodies."
SwRI researchers previously have used physical analog models to examine the process by which pit crater chains, a series of linear pits, or depressions, develop on Mars, and how magma in the Martian subsurface deforms the surface of the Red Planet.
More information: The paper, "Physical models of grooved terrain tectonics on Ganymede," by D.W. Sims, D.Y. Wyrick, D.A. Ferrill, A.P. Morris, G.C. Collins, R.T. Pappalardo and S.L. Colton, was published by Geophysical Research Letters, 16 June 2014, Volume 41, Issue 11, pages 3774–3778, DOI: 10.1002/2014GL060359
No comments:
Post a Comment