Showing posts with label finding. Show all posts
Showing posts with label finding. Show all posts

Monday, May 26, 2014

Finding Life on other planets will take good science and luck



Humanity will have the tools to detect alien life in the next two decades, but whether scientists can actually find life in another solar system depends a lot on luck, a panel of experts said Wednesday (May 21).

While the James Webb Space Telescope (JWST), expected to launch in 2018, will have the ability to search for the chemical signatures of life in the atmospheres of alien worlds, it doesn't necessarily guarantee that scientists will find extraterrestrial life somewhere in the universe.

No one is sure how life begins or how ubiquitous it is, making it very difficult to pinpoint when and where to find it, scientists said during a session at the 30th US National Space Symposium in Clorado.

"We don't know how many planets we're going to have to examine before we find life, and not finding it on 10 or 100 doesn't mean it's not there," John Grunsfeld, NASA's associate administrator for the science mission directorate said during the panel. "This may be very tricky."

This diagram shows the position of Kepler-186f in relation to Earth.

Credit: NASA Ames/SETI Institute/JPL-CalTech




A mission still in the early stages of development could also help scientists investigate alien worlds even without the use of a large telescope.

"Starshade," the huge sunflower-shaped craft would block light from a star to allow a well-positioned space telescope to look at the atmospheres of rocky planets orbiting sun-like stars, a historically difficult feat.

By using the starshade, scientists can hunt for an "Earth twin" orbiting a yellow star in the habitable zone like Earth, the only planet scientists know hosts life.

"We'll have the capability to find it [life] and we'll have that capability within a decade with James Webb and hopefully within two decades with an Earth twin, but beyond that, it's really just up to chance," Seager, who is affiliated with the starshade group, said.

The project is led by Jeremy Kasdin, a professor at Princeton University, N.J., in conjunction with JPL and support from Northrop Grumman of Redondo Beach, Calif.

Kasdin gave a TED talk about the project on March 19.

Friday, October 19, 2012

Scientists hope to find Life on Mars it by decoding Martian DNA

There are not enough genomes for Craig Venter to sequence here on Earth, so he's making plans to send a DNA sequencer to Mars.

"There will be life forms there," Venter said, with his usual confidence, at a Wired Health conference this week in New York.

If he can build a machine to find it, the next steps would be to decode its DNA, beam it back to Earth, put those genetic instructions into a cell and then boot up a Martian life form in a biosecure lab.

Assuming that there is DNA to be found on the Red Planet, the notion of equipping a future Mars rover to sequence the DNA isn't so crazy.

Venter has already sent his yacht around the globe to scoop up seawater and sequence whatever DNA it found in marine microbes.

He has also been working on technology to create small genomes from scratch and insert them into living cells to bring these organisms to life.

The difference now is that all of this technology would be applied to Mars. It's highly unlikely that any DNA-based life forms could survive on the Martian surface, so Venter's "biological teleporter" would dig under the surface for samples to sequence.

If they find anything, "it would take only 4.3 minutes to get the Martians back to Earth," he said. "Now we can rebuild the Martians in a P4 spacesuit lab."

Venter isn't the only one looking for Martian DNA. According to a report in the MIT Technology Review, so is Jonathan Rothberg, founder of the genome sequencing company Ion Torrent.

Rothberg is working with NASA-funded scientists from the Massachusetts Institute of Technology and Harvard to adapt his company's Personal Genome Machine for use on Mars, the report says.

It's part of a NASA astrobiology project known as the Search for Extra-Terrestrial Genomes, or SETG.

MIT research scientist Christopher Carr is part of a group that's "building a miniature RNA/DNA sequencer to search for life beyond Earth," according to his website.

"Top places to look include Mars, Enceladus (a moon of Saturn), and Europa (a moon of Jupiter)." Carr told Tech Review that one of the biggest challenges is shrinking Ion Torrent's 30-kilogram machine down to a mere 3 kg - light enough to fit on a Mars rover.

That's just one of the hurdles. NASA has no firm plans for a rover to succeed Curiosity, the lab-on-wheels that reached the Red Planet in August.

Even if a new rover gets the green light, there's no guarantee that a gene sequencer would get one of the coveted spots for research instruments.