Tucked away in a vacuum chamber for several months, Europe's largest telecom satellite has faced the harsh conditions it will deal with once it is launched into space this summer.
Testing at Intespace in Toulouse, France, simulated conditions close to those Alphasat will experience in flight, including the intense cold of its transfer orbits in the early stages of the mission.
Not only was Alphasat's ability to control its temperature tested, but other features were also put through their paces to ensure everything can run under the extreme cold and hot conditions.
"If you were going to test a new car for extreme conditions, you would probably want to do the same thing: not only check the heating and air conditioning, but also make sure that the engine, brakes, ignition and radio work in low temperatures as well as high," explained Philippe Sivac, ESA's Alphasat acting project manager.
To monitor the satellite inside the large chamber, nearly 600 temperature sensors were attached in key locations. A satellite the size of Alphasat can also carry up to 400 flight thermal sensors.
Readouts are displayed in real time, together with the satellite's internal data to help build an overall picture for the team monitoring Alphasat around the clock.
Running Alphasat under very stable thermal situations showed that the thermal-mathematical model is well suited to predict the temperatures in orbit.
"Finally, the performance and functional tests show that all the electronics and software perform as expected even at extreme temperatures."
Testing at Intespace in Toulouse, France, simulated conditions close to those Alphasat will experience in flight, including the intense cold of its transfer orbits in the early stages of the mission.
Not only was Alphasat's ability to control its temperature tested, but other features were also put through their paces to ensure everything can run under the extreme cold and hot conditions.
"If you were going to test a new car for extreme conditions, you would probably want to do the same thing: not only check the heating and air conditioning, but also make sure that the engine, brakes, ignition and radio work in low temperatures as well as high," explained Philippe Sivac, ESA's Alphasat acting project manager.
To monitor the satellite inside the large chamber, nearly 600 temperature sensors were attached in key locations. A satellite the size of Alphasat can also carry up to 400 flight thermal sensors.
Readouts are displayed in real time, together with the satellite's internal data to help build an overall picture for the team monitoring Alphasat around the clock.
Running Alphasat under very stable thermal situations showed that the thermal-mathematical model is well suited to predict the temperatures in orbit.
"Finally, the performance and functional tests show that all the electronics and software perform as expected even at extreme temperatures."
No comments:
Post a Comment