Scientists at Imperial College London have designed a concept mission to land astronauts on Mars.
The plan envisages a three-person crew journeying to Mars aboard a small two-part craft.
The craft would rotate to generate artificial gravity and use a heat shield to protect itself against solar flares.
The crew would then return to Martian orbit in a pre-sent craft fuelled using ice from beneath the planet's surface.
The concept is intended to spark further debate about the technical obstacles and risks that would have to be overcome in order to put humans on Mars.
"Every part of this mission scenario has been demonstrated one way or the other, including the in situ propellant production on the surface of Mars," said Prof Tom Pike, who led the Imperial design team.
"There are big, big jumps between a demonstration at one level and putting together the engineering systems for a mission, but they are engineering challenges. They are not fundamentally about making new discoveries."
The new Imperial concept comes amid renewed interest in the Red Planet with two private groups having proposed missions in recent months.
The Imperial team have designed a two-part craft, consisting of a Martian lander with a heat shield, inside which the crew would also ascend into Earth orbit.
Directly beneath the lander on the launch pad would be a "cruise habitat vehicle", a cylindrical craft split into three floors and measuring some 10m (30ft) in height and 4m in diameter.
Once in Earth orbit, the astronauts would move from the lander into the larger habitat vehicle before a rocket burst would propel the conjoined craft on a trajectory to Mars.
The quickest journey time would be nine months when Earth and Mars are in optimum alignment.
Shortly into the journey, the lander and cruise vehicle would unwind from each other on a steel cable tether to a distance of some 60m. Short thruster bursts from both vehicles would then set them spinning around a centre of gravity.
This would create artificial gravity within the habitat vehicle similar to Earth's gravity, which the scientists believe would prevent the type of muscle and bone wastage that weightlessness would cause, which would render the astronauts unable to walk on Mars once they arrived.
Later in the mission, the spin rate could be reduced to better emulate Martian conditions, where gravity is 40% that on Earth.
During the journey, the crew's health would be monitored closely with wireless sensors - but they would rely entirely on medication aboard the craft and the skills of their fellow crew members should they fall sick.
Read the full article here
The plan envisages a three-person crew journeying to Mars aboard a small two-part craft.
The craft would rotate to generate artificial gravity and use a heat shield to protect itself against solar flares.
The crew would then return to Martian orbit in a pre-sent craft fuelled using ice from beneath the planet's surface.
The concept is intended to spark further debate about the technical obstacles and risks that would have to be overcome in order to put humans on Mars.
"Every part of this mission scenario has been demonstrated one way or the other, including the in situ propellant production on the surface of Mars," said Prof Tom Pike, who led the Imperial design team.
"There are big, big jumps between a demonstration at one level and putting together the engineering systems for a mission, but they are engineering challenges. They are not fundamentally about making new discoveries."
The new Imperial concept comes amid renewed interest in the Red Planet with two private groups having proposed missions in recent months.
The Imperial team have designed a two-part craft, consisting of a Martian lander with a heat shield, inside which the crew would also ascend into Earth orbit.
Directly beneath the lander on the launch pad would be a "cruise habitat vehicle", a cylindrical craft split into three floors and measuring some 10m (30ft) in height and 4m in diameter.
Once in Earth orbit, the astronauts would move from the lander into the larger habitat vehicle before a rocket burst would propel the conjoined craft on a trajectory to Mars.
The quickest journey time would be nine months when Earth and Mars are in optimum alignment.
Shortly into the journey, the lander and cruise vehicle would unwind from each other on a steel cable tether to a distance of some 60m. Short thruster bursts from both vehicles would then set them spinning around a centre of gravity.
This would create artificial gravity within the habitat vehicle similar to Earth's gravity, which the scientists believe would prevent the type of muscle and bone wastage that weightlessness would cause, which would render the astronauts unable to walk on Mars once they arrived.
Later in the mission, the spin rate could be reduced to better emulate Martian conditions, where gravity is 40% that on Earth.
During the journey, the crew's health would be monitored closely with wireless sensors - but they would rely entirely on medication aboard the craft and the skills of their fellow crew members should they fall sick.
Read the full article here
No comments:
Post a Comment