Patrick Coronado points to Soumi NPP which is featured in the entranceway of the Direct Readout Laboratory at Goddard Space Flight Center.
Credit: NASA.
Real-time data that will be used in everything from weather forecasts to disaster response is now being beamed down to Earth from a cone-shaped appendage aboard the nation's newest Earth-observing satellite.
The High Rate Data (HRD) link is an antenna aboard the Suomi National Polar-Orbiting Partnership (NPP) satellite that provides 'direct broadcast' data to users in real-time.
Researchers world-wide are then able to use customized algorithms, or mathematical formulas, turning raw data into images to help manage quickly changing regional events, such as rapidly spreading forest fires, rushing flood waters and floating icebergs at the poles that could affect the shipping and fishing industries.
"Direct Broadcast data is unique in that it provides real-time data on a regional basis which enables quick evaluation of events at a local level," said Patrick Coronado, head of the Direct Readout Laboratory at NASA's Goddard Space Flight Center in Greenbelt, Md.
In general, a satellite stores data on-board until it passes over a ground station where it downloads or 'dumps' the data. In Suomi NPP's case, data is dumped every time it passes over the ground station in Svalbard, Norway, about 14 times every 24 hours.
Use of this mode of storage, called Storage Mission Data, ensures that information is not lost when the spacecraft is out of sight of any ground stations, such as when it is over the ocean.
This collected data then runs through a computer system on the ground called the Interface Data Processing Segment (IDPS), which uses science algorithms to create data products for environmental monitoring and research. But this process can take some time and some users need the data as soon as possible.
The USDA Forest Service, for example, needs information quickly to map forest fires as they begin and spread to surrounding areas so they use the direct broadcast data, feeding it into customized algorithms that help remote sensing and image analysts to quickly process the data into usable images and mapping products so that firefighters and other first responders can react appropriately.
"We apply direct broadcast data daily to produce an entire suite of fire mapping and geo-spatial products," said Brad Quayle, an image analyst at the USDA Forest Service Remote Sensing Applications Center.
"We can produce about a dozen science products within 20 minutes after we receive the raw data from the satellite, including detection of active fires. Utilizing other means to acquire imagery and derive products could add several hours to the process. Providing accurate and reliable information with minimal latency aids decision makers in various aspects of fire management," he added.
Currently, the USDA Forest Service uses direct broadcast data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on both the Aqua and Terra satellites.
With Suomi NPP's new direct broadcast antenna, the organization plans to use data from NPP's Visible Infrared Imaging Radiometer Suite (VIIRS) to augment its current MODIS capabilities and continue producing instant active fire maps for emergency officials.
The USDA also uses direct broadcast data for mapping the location and extent of burn scars and monitoring the health of the approximately 700 million acres of forested land throughout the United States.
Ultimately, Suomi NPP's direct broadcast data does two things: continue NASA's role in data continuity by picking up where MODIS will leave off, and enable users to pluck data that is of importance to them from the reservoir of information that comes down from Suomi NPP.
No comments:
Post a Comment