This image shows one of many fresh impact craters spotted by the UA-led HiRISE camera, orbiting the Red Planet on board NASA's Mars Reconnaissance Orbiter since 2006.
Credit: NASA /JPL-Caltech /MSSS /UA
Scientists using images from NASA's Mars Reconnaissance Orbiter, or MRO, have estimated that the planet is bombarded by more than 200 small asteroids or bits of comets per year forming craters at least 12.8 feet (3.9 meters) across.
Researchers have identified 248 new impact sites on parts of the Martian surface in the past decade, using images from the spacecraft to determine when the craters appeared.
The 200-per-year planet-wide estimate is a calculation based on the number found in a systematic survey of a portion of the planet.
The University of Arizona's High Resolution Imaging Science Experiment, or HiRISE camera, took pictures of the fresh craters at sites where before and after images had been taken.
This combination provided a new way to make direct measurements of the impact rate on Mars and will lead to better age estimates of recent features on Mars, some of which may have been the result of climate change.
"It's exciting to find these new craters right after they form," said Ingrid Daubar of the UA, lead author of the paper published online this month by the journal Icarus.
"It reminds you Mars is an active planet, and we can study processes that are happening today."
These asteroids or comet fragments typically are no more than 3 to 6 feet (1 to 2 meters) in diameter.
Space rocks too small to reach the ground on Earth cause craters on Mars because the Red Planet has a much thinner atmosphere.
MRO has been examining Mars with six instruments since 2006. Daubar is an imaging targeting specialist who has been on the HiRISE uplink operation s team from the very beginning.
She is also a graduate student in the UA's department of planetary science and plans on graduating with her doctorate in spring 2014.
"There are five of us who help plan the images that HiRISE will take over a two-week cycle," she explained.
"We work with science team members across the world to understand their science goals, help select the image targets and compile the commands for the spacecraft and the camera."
"The longevity of this mission is providing wonderful opportunities for investigating changes on Mars," said MRO Deputy Project Scientist Leslie Tamppari of NASA's Jet Propulsion Laboratory in Pasadena, Calif.
Credit: NASA /JPL-Caltech /MSSS /UA
Scientists using images from NASA's Mars Reconnaissance Orbiter, or MRO, have estimated that the planet is bombarded by more than 200 small asteroids or bits of comets per year forming craters at least 12.8 feet (3.9 meters) across.
Researchers have identified 248 new impact sites on parts of the Martian surface in the past decade, using images from the spacecraft to determine when the craters appeared.
The 200-per-year planet-wide estimate is a calculation based on the number found in a systematic survey of a portion of the planet.
The University of Arizona's High Resolution Imaging Science Experiment, or HiRISE camera, took pictures of the fresh craters at sites where before and after images had been taken.
This combination provided a new way to make direct measurements of the impact rate on Mars and will lead to better age estimates of recent features on Mars, some of which may have been the result of climate change.
"It's exciting to find these new craters right after they form," said Ingrid Daubar of the UA, lead author of the paper published online this month by the journal Icarus.
"It reminds you Mars is an active planet, and we can study processes that are happening today."
These asteroids or comet fragments typically are no more than 3 to 6 feet (1 to 2 meters) in diameter.
Space rocks too small to reach the ground on Earth cause craters on Mars because the Red Planet has a much thinner atmosphere.
MRO has been examining Mars with six instruments since 2006. Daubar is an imaging targeting specialist who has been on the HiRISE uplink operation s team from the very beginning.
She is also a graduate student in the UA's department of planetary science and plans on graduating with her doctorate in spring 2014.
Leslie Tamppari |
"We work with science team members across the world to understand their science goals, help select the image targets and compile the commands for the spacecraft and the camera."
"The longevity of this mission is providing wonderful opportunities for investigating changes on Mars," said MRO Deputy Project Scientist Leslie Tamppari of NASA's Jet Propulsion Laboratory in Pasadena, Calif.
No comments:
Post a Comment