Cassini will attempt to bounce signals off of Saturn's moon Titan once more during a flyby on June 18, 2014, revealing important details about the moon's surface.
Image Credit: NASA/JPL-Caltech
As NASA’s Cassini spacecraft zooms toward Saturn’s smoggy moon Titan for a targeted flyby on June 18, mission scientists are excitedly hoping to repeat a scientific tour de force that will provide valuable new insights into the nature of the moon's surface and atmosphere.
For Cassini’s radio science team, the last flyby of Titan, on May 17, was one of the most scientifically valuable encounters of the spacecraft’s current extended mission.
The focus of that flyby, designated “T-101,” was on using radio signals to explore the physical nature of Titan’s vast northern seas and probe the high northern regions of its substantial atmosphere.
The Cassini team hopes to replicate the technical success of that flyby during the T-102 encounter, slated for June 18, during which the spacecraft will attempt similar measurements of Titan.
During closest approach, the spacecraft will be just 2,274 miles (3,659 kilometers) above the surface of the moon while travelling at 13,000 miles per hour (5.6 kilometers per second).
During the upcoming flyby, if all goes well as before, Cassini’s radio science subsystem will bounce signals off the surface of Titan, toward Earth, where they will be received by the ground stations of NASA’s Deep Space Network.
This sort of observation is known as a bistatic scattering experiment and its results can yield clues to help answer a variety of questions about large areas of Titan’s surface: Are they solid, slushy or liquid? Are they reflective? What might they be made of?
During the May encounter, Cassini beamed radio signals over the two largest bodies of liquid on Titan, seas named Ligeia Mare and Kraken Mare.
During that first attempt, scientists could not be certain the signals would successfully bounce off the lakes to be received on Earth.
They were thrilled when ground stations received specular reflections, essentially the glint, of the radio frequencies as they ricocheted off Titan.
Cassini team members react with excitement to the successful receipt of radio signals bounced off of Titan during a flyby on May 17, 2014. Image Credit: NASA/JPL-Caltech
Read the full story here.
Image Credit: NASA/JPL-Caltech
As NASA’s Cassini spacecraft zooms toward Saturn’s smoggy moon Titan for a targeted flyby on June 18, mission scientists are excitedly hoping to repeat a scientific tour de force that will provide valuable new insights into the nature of the moon's surface and atmosphere.
For Cassini’s radio science team, the last flyby of Titan, on May 17, was one of the most scientifically valuable encounters of the spacecraft’s current extended mission.
The focus of that flyby, designated “T-101,” was on using radio signals to explore the physical nature of Titan’s vast northern seas and probe the high northern regions of its substantial atmosphere.
The Cassini team hopes to replicate the technical success of that flyby during the T-102 encounter, slated for June 18, during which the spacecraft will attempt similar measurements of Titan.
During closest approach, the spacecraft will be just 2,274 miles (3,659 kilometers) above the surface of the moon while travelling at 13,000 miles per hour (5.6 kilometers per second).
During the upcoming flyby, if all goes well as before, Cassini’s radio science subsystem will bounce signals off the surface of Titan, toward Earth, where they will be received by the ground stations of NASA’s Deep Space Network.
This sort of observation is known as a bistatic scattering experiment and its results can yield clues to help answer a variety of questions about large areas of Titan’s surface: Are they solid, slushy or liquid? Are they reflective? What might they be made of?
During the May encounter, Cassini beamed radio signals over the two largest bodies of liquid on Titan, seas named Ligeia Mare and Kraken Mare.
During that first attempt, scientists could not be certain the signals would successfully bounce off the lakes to be received on Earth.
They were thrilled when ground stations received specular reflections, essentially the glint, of the radio frequencies as they ricocheted off Titan.
Cassini team members react with excitement to the successful receipt of radio signals bounced off of Titan during a flyby on May 17, 2014. Image Credit: NASA/JPL-Caltech
Read the full story here.
No comments:
Post a Comment